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Abstract— In Monocular Keyframe Visual Simultaneous Lo-
calization and Mapping (MKVSLAM) frameworks, when incre-
mental position tracking fails, global pose has to be recovered in
a short-time window, also known as short-term relocalization.
This capability is crucial for mobile robots to have reliable
navigation, build accurate maps, and have precise behaviors
around human collaborators. This paper focuses on the develop-
ment of robust short-term relocalization capabilities for mobile
robots using a monocular camera system. A novel multimodal
keyframe descriptor is introduced, that contains semantic
information of objects detected in the environment and the
spatial information of the camera. Using this descriptor, a new
Keyframe-based Place Recognition (KPR) method is proposed
that is formulated as a multi-stage keyframe filtering algorithm,
leading to a new relocalization pipeline for MKVSLAM systems.
The proposed approach is evaluated over several indoor GPS
denied datasets and demonstrates accurate pose recovery, in
comparison to a bag-of-words approach.

I. INTRODUCTION

Monocular Keyframe Visual Simultaneous Localization
and Mapping (MKVSLAM) is an optimization-based frame-
work used in mobile robotics. This approach computes
the robot’s pose while simultaneously creating a sparse-
reconstruction of the environment incrementally for each
keyframe. A keyframe contains compact description of the
observed space (no actual image is stored) and is interlinked
with others in a directed graph called a pose graph. When
incremental tracking is interrupted, the global pose must be
recovered in a short period of time to maintain the accuracy
of the robot’s localization and the map usability. In this paper,
this event is defined as the short-term relocalization problem.

An important step in recovering global position, in this
framework, is to choose a number of appropriate keyframes
from the pose graph. Additionally, information that describes
the physical space where incremental tracking was inter-
rupted, is useful for subsequent pose recovery [1]. This step
is defined as the Keyframe-based Place Recognition (KPR).
In this regard, each keyframe requires a unique description
that differentiates it from other keyframes in the pose graph.

Several MKVSLAM frameworks choose keyframes for
pose recovery using the bag-of-words (DBoW2) method [2].
In this method, keyframes are described using collections
of non-semantic local features. However, the bag-of-words
method has shown limited success for short-term relocaliza-
tion since the events that trigger tracking loss decrease the
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Fig. 1: High level system overview: For each keyframe (colored
rectangles) the proposed multimodal descriptor is formed using
semantic and spatial data. When tracking is lost in the red keyframe,
the proposed KPR method selects a number of keyframes from the
pose graph. By solving a series of correspondences between 3D
map points (in a candidate keyframe) to 2D keypoints (in query
keyframe), an estimation of the global pose is found. Followed by a
pose graph optimization step, global pose is recovered in the yellow
keyframe and incremental tracking resumes in green keyframes.

number of local features identified. Furthermore, DBoW2
does not contain spatial data [3].

Some MKVSLAM frameworks have integrated human-
understandable semantics into their pipeline. In these works,
semantic data offers additional information for geometric
landmarks such as points, planes, and objects [4] and can
provide reliable solutions for people tracking [5].

This paper leverages the advancements in semantic data
extraction using deep neural networks and presents a fast
and accurate solution to the short-term relocalization prob-
lem. The proposed approach introduces a novel multimodal
keyframe descriptor consisting of semantics and spatial data
from monocular images. This is integrated into a KPR
method that chooses appropriate keyframes candidates by
passing them through a multi-stage filtering algorithm. The
novel KPR is coupled with an off-the-shelf 3D-2D pose esti-
mation technique to create a novel relocalization pipeline that
is shown in Fig. 1. By incorporating the novel relocalization
method into ORB-SLAM3 [6], an open-source MKVSLAM
framework, the robustness and efficiency of the proposed
approach is demonstrated for aerial and ground robot datasets
operating in GPS-denied environments.

The contributions of this paper are as follows:

• A new keyframe descriptor called the Pose Semantic
Descriptor (PSD) is proposed. It utilizes semantic data
and camera pose to uniquely characterize keyframe
objects in the pose graph. Using this descriptor, a novel
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KPR algorithm called the Pose-Class-Box (PCB) is
formulated.

• The integration of the proposed KPR method for
improving short-term relocalization within the ORB-
SLAM3 MKVSLAM framework.

The remainder of the paper is organized as follows: Sec-
tion II discusses related keyframe descriptors and global pose
recovery methods based on keyframes. Section III presents
the proposed PSD descriptor, the KPR method, and how they
are integrated within a MKVSLAM system. In Section IV,
the experimental results are discussed. Section V summarizes
findings and discusses future work.

II. RELATED WORK

Descriptors for keyframes: A variety of MKVSLAM
frameworks using local feature [6], feature learning [9], or
object detection [10] have adopted the visual bag-of-words
model to describe keyframes. This descriptor is created by
extracting local features using algorithms such as Oriented
FAST and Rotated BRIEF (ORB) [11] or Scale-Invariant
Feature Transform (SIFT) [12], and aggregating those fea-
tures into a collection of visual words based on a pre-
trained vocabulary [2]. While it is pose-invariant, efficient in
traversing the pose graph, and chooses optimal keyframes for
loop closures [1], it lacks any spatial or semantic data. This
additional information has been shown to improve localiza-
tion when there is a large viewpoint difference, low texture,
or noise [3]. Neural network based approaches aim to learn
on how to extract local features [13], update the vocabulary
online [14], and compute descriptors as a function of the
image [15].

Relocalization approaches: A fast global pose recov-
ery method was introduced in [1] where keyframes were
uniquely identified using the bag-of-words model. Here
non-semantic local features were aggregated into visual
words [16] using a pretrained dictionary. When tracking fails,
a KPR method retrieved a number of candidate keyframes
based on a normalized L1 score between the query and
candidate keyframes. No semantic data was considered in
this approach. Bruno and Colombini integrated the Learning
Invariant Feature Transform (LIFT) [17] with ORB-SLAM1
to form a hybrid monocular Visual Simultaneous Localiza-
tion and Mapping (VSLAM) system [13]. A drone and an
outdoor ground robot dataset were used in their testing.
The approach demonstrated higher positional accuracy when
compared with ORB-SLAM1. However, this method focused
on the feature extraction and still relied on the bag-of-words
approach for relocalization. In [18], class labels of objects
were detected using YOLO bounding-box regressor [19] and
were used to form an object label array. An object similarity
score was computed by comparing the class label arrays
between query and candidate keyframes to perform place
recognition. No spatial information (pose, bounding box) was
used, and the size of the object label array is needed to be
known apriori.

Semantics for localization: In [20] a metric map was
augmented with the 3D poses of objects detected using a

neural network. Here, relocalization was demonstrated as a
long-term data association problem where global pose was
recovered by aligning two semantic maps recorded for the
same environment but taken at two different instances. In
[21] two approaches for accurate pose estimation in human
populated indoor environments were presented. Using YOLO
[19] to detect objects and Mask-RCNN [22] to perform se-
mantic segmentation, the approach was integrated with ORB-
SLAM2 MKVSLAM framework. Another work building on
top of ORB-SLAM2 was proposed in [9] where semantic
segmentation data and a geometric constraint were used
to develop a new local keypoints extraction method. This
method filtered out keypoints belonging to moving objects
to improve position estimation accuracy and the semantic
data was used create a dense metric-semantic map. Similar
to the above, in DynaSLAM [23] and DyOb-SLAM [24],
moving objects were semantically segmented to remove the
keypoints associated with them. This was shown to jointly
improve camera pose estimation, and tracking position of
mobile objects in the active map.

III. METHODOLOGY

Figure 2 shows the framework for the short-term relo-
calization approach. The method uses an Object Detection
module to extract semantic data, shown in light purple, based
on a Deep Neural Network (DNN) architecture. This data
is passed into a MKVSLAM system (shown in light blue).
In the following paragraphs, the new keyframe descriptor is
presented and the keyframe-based place recognition approach
is detailed.

A. Pose Semantic Descriptor in the context of MKVSLAM

The proposed approach starts by extracting meaningful
information from the environment and generates semantic
data based on identified objects. That is, at each timestep,
n : n ∈ Z+, an RGB image In is passed through the Object
Detection module that contains a DNN object detector as
described in [19]. The output is a matrix named here the
semantic matrix SMn ∈ Rb×5 where b ∈ Z+ is the number
of objects detected. Each row of this matrix contains the
class label and the 2D bounding box coordinate of an object
described by the top-left and bottom-right corners in the
image coordinate system. The class labels are defined using
an unique integer number.

A copy of the original image, In, and the semantic matrix,
SMn, are passed to the VSLAM system (in light blue) were
a frame object, Fn = {In,SMn, {xz1

n },Twn} is created.
Here, {xz1

n } are the 2D non-semantic features extracted from
the image (keypoints), and Twn is an initial estimate of the
camera pose represented in SE(3). Twn is refined over time
using Bundle Adjustment (BA) [5].

The SLAM module has modes of operations (referred to as
states) as depicted with colored arrows in Figure 2. The green
path, defined as a tracking state, refers to the continuous
simultaneous estimation of the camera pose and environment
mapping. The orange path, defined as a lost state, refers to
the state where the system attempts to recover from global
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Fig. 2: Overview of the full framework: An image is passed through the purple block where the preprocess block is resizing the image,
that is next fed to the YOLOv5 object detector [7]. Next the postprocess block performs non-maximal suppression [8] on the detection
to finalize class predictions for the detected objects. In light blue the MKVSLAM module is presented. The path in green shows the
active tracking state. The path in orange shows a relocalization attempt in a lost state. The path in red indicates a full recovery failure.
The relocalization pipeline identified by the dashed deep blue rectangle consists of computing the PSD descriptor of the query keyframe,
choosing optimal candidates using the proposed KPR method and recovering global camera position by solving a series of Perspective-
n-Point (PnP) problems.

position loss. This recovery must happen within a certain
number of time steps (nfail) from the moment that tracking
loss occurs. If the global pose is not recovered within nfail

time steps, the systems follows the red path defined as a
failure state. In the failure state, the current map closes and
a new map is initialized. Each active map denoted by M∗

is defined as a local map. One session may contain multiple
local maps but only one is active at any given time. In the
tracking and lost states, a frame object is used to create a
keyframe object KFn = {PSDn,Xn}, where Xn ∈ R3 are
the initial position estimates of 3D map points associated
with {xz1

n } keypoints. If no objects are detected, then PSDn,
is not generated and no keyframe is created from frame Fn,.

To increase the knowledge of the system in defining a
keyframe object for fast and accurate candidate selection,
this paper presents the novel multimodal keyframe descriptor
called the Pose Semantic Descriptor (PSD). The proposed
descriptor is formulated as the following data structure:

PSDn =
{
n,

{
slkn

}
,Bn,Twn

}
(1)

where, n is the timestep,
{
slkn

}
denotes the set of class

labels for the k objects detected. Bn ∈ Rk×4 are their
2D bounding box coordinates, and Twn is the camera pose.
The multimodal nature of the descriptor allows the semantic
(objects detected and associated class labels) and geometric
data (camera pose) to complement each other for place
recognition.

B. Pose-Class-Box Keyframe-based Place Recognition
(KPR) method

In the following paragraphs a new KPR method is pre-
sented, named the Pose-Class-Box approach. This is activated
during a lost state and is formulated as a three-stage filtering
algorithm.

In the first stage, spatial data is used to define a pose
constraint. Consider the pose of the camera represented by

T ∈ R4×4:

T =

[
R s.t
0 1

]
=


r11 r12 r13 s.tx
r21 r22 r23 s.ty
r31 r32 r33 s.tz
0 0 0 1

 (2)

where R ∈ R3×3 ∈ SO(3) is the rotation matrix, s ∈ R
is the scale factor, and t = [tx, ty, tz]

T ∈ R3 is camera‘s
translation in the world coordinate frame w. T is non-
singular matrix, independent of the scale factor s.

For two camera poses (Tw1,Tw2) that are similar, the
following relation is defined:

if Tw1 ≈Tw2 ⇒
δT1,2 =| ||Tw1||F − ||Tw2||F | ∈ R+ ≈ 0

(3)

where || · ||F is the Frobenius norm [25]. Based on Equa-
tion (3), in this work the geometrical similarity between two
keyframe poses is represented by one real number. This is
computed pairwise between the query keyframe and all other
keyframes in the pose graph. For a given pair of keyframes at
times n and l, let this number be denoted δTn,l and computed
as:

δTn,l = ||Twn −Twl||F =

√√√√ n∑
i=1

m∑
j=1

|aij |2

 (4)

Using the above equation, the procedure of selecting
keyframe candidates from the pose graph in the active map
M has to satisfy Equation (5). This is defined as the pose
constraint step.

ϵ ≤ δTn,l ≤ δTth, (5)

where δTth is a predefined threshold and ϵ = 10−4 is to
account for numeric errors. The list of candidates after the
first filtering stage is marked by

{
P j
n

}
. The pose constraint

step can be described as selecting candidates within the
search sphere centered around the query keyframe KFn with
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Fig. 3: Application of proposed KPR method in a 2D case. The top row shows the collection of objects seen by the query keyframe
and some of the candidate keyframes. Colored triangles in active map represents keyframes, with red being identified those that aren’t
chosen by the proposed approach. Keyframes that are selected in each of the three steps are colored in green. The shaded blue circle is
the search sphere in the pose constraint. In the class constraint only keyframes 21 and 31 are selected as they contain the same type of
objects as the query keyframe (identified by blue triangle). The box constraint retains only keyframe 21 as the location of the observed
objects matches the query keyframe.

a radius δTth (shaded-blue circle in Fig. 3). This keyframe is
created by computing its PSD and retaining 3D map points
Xn from frame Fn.

Note that, only using the pose constraint described above,
a candidate is selected from search sphere even if it’s
orientation is significantly different from KFn (blue tri-
angle in Fig. 3). This can lead to choosing keyframes
ill-conditioned to recover camera pose using 3D-2D pose
estimation techniques. To address this limitation, semantic
data is incorporated into the proposed KPR approach in the
second stage, class constraint. This is detailed below.

Let the list of classes of objects be {cn} in the query
keyframe and {cj} in the jth candidate keyframe. As the
class labels are represented by unique integer numbers, a
numeric score, δCn,j ∈ R+, describing the similarity of the
class labels between {cn} and {cj} is computed as:

δCn,j = ||| {cn} ||2 − || {cj} ||2| (6)

The above numeric score is computed pairwise between the
query keyframe and all the l candidates in

{
P j
n

}
. Each

pairwise score is stored in the list
{
Cj

n

}
. A keyframe

candidate is considered semantically relevant if the below
condition is fulfilled:

δCth ≤ δCn,j ≤ δCth + 0.1δCth (7)

where δCth is an adaptive threshold computed as:

δCth = min
({

Cj
n

})
(8)

The list of candidates after the second filtering stage is
marked by

{
Rj

n

}
. This formulation has two advantages.

Firstly, it is order independent, i.e the same score is obtained
regardless the order the class labels appear in the semantic
matrix. Secondly, the number of objects recorded in the two
keyframes is not required to be same.

However, representing classes as integers may lead to
some ambiguous cases resulting in wrong keyframe selec-
tions. For example, if {cn} = {1, 1, 1, 1} and {cj} = {4}
then both δCth and δCn,j are equal leading to a wrong
selection. To address this issue and further reduce the pool
of candidates, the last stage of the KPR approach is focused
on filtering keyframes based on the location of the bounding
boxes of the objects in the image coordinate frame, referred
as the box constraint step.

If the jth candidate satisfies Equation (8), let Bn ∈ Rbn×4

be the bounding box coordinates of objects recorded in the
query keyframe and Bj ∈ Rbj×4 represent the bounding
box coordinates of objects recorded in the jth candidate.
The Intersection-over-Union (IoU) scores [26] between the
bounding boxes in the query keyframe and all the candidates
in {Rj

n} is computed. To establish the objects that are visible
both in the query and candidate keyframes, a threshold is
used:

if %IoU > δIoU ⇒ vj = vj + 1 (9)

where %IoU is the percentage overlap, δIoU is a predefined
threshold, and vj is a counter for objects that overlap in the
scene. If a certain number of objects have been identified as
being in both keyframes, the candidate is considered relevant
for relocalization. This can be formulated as:

if vj ≥ bn ⇒ jth keyframe ∈ {KPRw
n } (10)

where bn is the number of objects in the query keyframe and
{KPRw

n } is the final candidate list.
However, if global pose is not recovered at the exact nth

timestep, then frames Fn+1,Fn+2, ... have their camera pose
initialized to an identity matrix, I4×4. This is due the fact that
in a monocular MKVSLAM system, no other information
beyond image data is available to estimate camera pose. In
these frames, computing δTn,l using Equation (4) will result
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in computing the Euclidean distance of KFn from origin
only, resulting in the search sphere pulling candidates that
may have no semantic or geometric relevance. In this case,
the pose constraint step should be skipped, and only the
class constraint and box constraint steps are used to select
candidates from the pose graph in the active map M. This
is marked as the Class-Box KPR method. To select either
the PCB or the CB KPR methods, the following conditional
check is used:

if δTL2
= ||Twn − I4||2 > 0 ⇒ full PCB (11)

C. Proposed short-term relocalization method
The proposed short-term relocalization method is imple-

mented as shown in Algorithm 1. The hyperparameters
of the algorithm are ∆Tth, nfail. Line 2 extracts all the
keyframes {Ki

n} in the pose graph at nth timestep where
i represents the number of keyframes. Line 5 computes the
PSD descriptor as expressed in Equation (1). Line 9 calls for
the full PCB method and line 11 calls the reduced version
as described by Equation (11). Line 14 recovers the global
position in the active map M by solving a series of 3D to 2D
motion estimation problems using the Maximum Likelihood
Perspective-n-Point (MLPnP) [27] solver. Here bF lag is set
to true if a pre-defined number of map points to keypoints
correspondences are found. If bF lag is true, tracking state
is resumed (system follows the green path in Figure 2), else
Algorithm 1 is repeated as long as recovery is not successful
within nfail timesteps. If this is not achieved, a new local
map is initialized, as shown in lines 19-21.

Algorithm 1 Relocalization using PCB
Input: Frame Fn, Map M, timestep n, δTth, nfail

1: nr ← 1
2: {Ki

n} ←M.GetAllKeyFrames()
3: for nr < nfail do
4: KFn ← KeyFrame (Fn)
5: KFn.ComputePSD ()
6: for j ← 1 to i do
7: δTL2 ← ||Twj − I4||
8: if δTL2 > 0 then
9: {KPRw

n } ← PCB
(
KFn, {Ki

n}, δTth

)
10: else
11: {KPRw

n } ← CB
(
KFn, {Ki

n}, δTth

)
12: end if
13: end for
14: bF lag ← PerformRelocalization ({KPRw

n })
15: if bF lag == True then
16: Return bF lag, {KPRw

n } ,KFn

17: else
18: nr ← nr + 1
19: if nr >= nfail then
20: Stop PCB
21: Terminate M
22: end if
23: end if
24: end for

IV. EXPERIMENT & RESULTS

This section details the algorithm implementation, exper-
imental setup, and the obtained results.

A. Implementation details

The proposed approach is implemented and tested on a
computer with Ubuntu 22.04, Intel i5-9300H @ 2.4GHz,
NVIDIA RTX 2060 GPU, and 16 GB RAM. The PSD
keyframe descriptor and PCB KPR method were incorpo-
rated in ORB-SLAM3. Multi-mapping, loop closure and four
parallel threads were used and the proposed modifications
targets the relocalization function in the Tracking, Local
Mapping, and Keyframe Database modules in the ORB-
SLAM3 framework [6]. For the object detection module, the
YOLOv5L has been chosen due to its fast computational
capabilities [7]. The complete system was implemented in
Robot Operating System (ROS) [28]. The source code and
the datasets used for this paper are made publicly available at
the link below*. The parameters for the proposed relocaliza-
tion method were set as follows: nfail was set to 20 timesteps
that approximately corresponds to one second, δTth = 0.5
and δIoU = 90% were set based on trial and error.

B. Dataset

The experiment is performed on 18 indoor image se-
quences spanning across four unique datasets split into two
drone and two ground robots datasets, as shown in Table I.
Sequences for the drone dataset are taken from the Euroc
MAV dataset [29]. The sequences present a drone maneu-
vering in different indoor environments containing variety
of objects. This dataset has ground-truth camera poses. One
ground robot dataset is taken from the FR2 PIONEER SLAM
sequences in the TUM RGB-D dataset [30]. This dataset
presents motion-blur in the images and discontinuities in
the recording, that can induce the lost state. Ground-truth
poses are available in this dataset. Another ground vehicle
dataset is created for this project and referred as the LSU
iCORE Mono dataset. This is an indoor dataset representing
a robotics laboratory showcasing a cluttered environment,
with multiple chairs, people, workbenches, other robots,
whiteboards, etc. This dataset has no ground-truth camera
poses. The YOLOv5L network is trained for the Object
Detection module for each of the four datasets as shown
in Table I. An NVIDIA RTX 3080 Ti was used to train all
the networks.

C. Experiment

The proposed relocalization method, as introduced in
Section III-C, is tested in all the 18 image sequence described
before. In the sequences from EuRoC MAV and LSU-iCORE-
Mono datasets, 5 lost states are artificially induced at random
times. As the FR2 PIONEER SLAM dataset is prone to
lost state occurrences, there was no need to artificially
induce the lost state. Each sequence is run 10 times and
a series of quantitative metrics are computed to evaluate
the performance of the system. For comparison, the DBoW2
based relocalization method in ORB-SLAM3 is used as the
baseline for analyzing the obtained results.

*https://github.com/RKinDLab/ros2_psd_pcb_reloc
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TABLE I: Description of the experimental dataset showing associated platforms, sequences used for testing relocalization
methods, sequences used to train their respective YOLOv5L networks and the number of classes detectable.

Dataset (abbrev.) Platform Sequences used for testing
Relocalization methods

Sequences used to train
Object detector

Detectable
classes

Machine Hall (MH)
Drone

MH01, MH02, MH03, MH04, MH05 MH01, MH04 26
Vicon Room (VicR) V101,V102, V103, V201, V202, V203 V102, V203 15

FR2 Pioneer SLAM (FR2PS)
Rover

FR2360, FR2PS1, FR2PS2, FR2PS3 FR2PS1, FR2PS2 17
LSU-iCORE-Mono (LiM) ROBO0, ROBO1, ROBO2 ROBO0, ROBO1, ROBO2 17

Fig. 4: Execution time for the KPR methods and the full relocal-
ization method. Deep green bar represents the time for proposed
KPR, deep blue for DBoW2 KPR, light green for the proposed
relocalization method and light blue for the DBoW2 relocalization
method. Best viewed in color.

D. Metrics

The Mean Average Precision (mAP) metric [31] is chosen
to measure the detection performance of the Object Detec-
tion module. For evaluating the KPR method, the average
execution time and the average keyframe candidates selected
are recorded. The average total execution time, the average
number of frames spent in lost state, and the average number
of local maps created when pose recovery fails are used
to study the relocalization method. To assess the impact
of extended tracking loss Absolute Trajectory Error (ATE)
[30] score is calculated. ATE scores are reported only for
sequences that have ground-truth camera poses.

E. Results and Discussion

Prior to conducting the experiment, it is necessary to
assess if the Object Detection Module has high precision.
This is important to maximize the effectiveness of semantic
information within the proposed relocalization method. The
mAP scores are 82.9%, 83.5%, 84.0% and 91.0% for the
MH, VicR, FR2PS and LiM datasets respectively. The average
inference time is 29.55 ms which is lower than the average
time needed by ORB-SLAM3 to process one image [6].

An important requirement for the proposed multimodal
keyframe descriptor is to facilitate fast candidate retrieval
when performing relocalization [1]. As depicted in Figure 4,

the proposed KPR method is faster than the DBoW2 method
in all four datasets with an average execution time of 0.297
ms, being two times faster than the DBoW, that has an
average execution time of 0.702 ms. The proposed KPR ap-
proach extracts on average five, six, four, and four keyframe
candidates from the MH, VicR, FR2PS, and LiM datasets
respectively. In comparison, the DBoW2 KPR selected, on
average, only one candidate in all datasets.

These results show that the inclusion of both geometrical
and semantic information into the keyframe descriptor im-
proves its capabilities by allowing more keyframe candidates
to be selected at a faster rate than the DBoW2 approach.
The performance of the proposed relocalization method is
shown in Table II. The proposed approach has an average
execution time of 3.817 ms, while the DBoW2 relocalization
method has an average execution time of 3.011 ms. Although
the proposed KPR method demonstrates rapid keyframe
selection, in average 0.297 ms, the main computational load
during relocalization falls on the PnP solver. This is primarily
due to KPR generating four times more keyframe candidates
than the baseline DBoW2, leading to increased processing
of 3D map points to 2D key point correspondences. De-
spite this, the proposed method maintains a real-time speed,
approximately 4 ms. The proposed relocalization method
performs better than the DBoW2 approach by reducing the
time spent in the lost state by approximately 50%. This is
shown in the the columns Avg. timesteps in lost state in
Table II. Furthermore, the proposed approach, in average
creates less local maps than the DBoW2 approach as shown
in columns Avg. local maps in Table II. This shows that a
richer description for the keyframes aids the overall system,
by spending less time in the lost state. If a lost state persists,
it is more likely to initialize a new local map that can lead
to inaccuracies in pose estimation. In the following lines,
the performance of the proposed relocalization method is
discussed independently for each of the datasets. In the
MH dataset, the proposed relocalization method shows good
performance, spending only three timesteps in lost state and
creating one local map. This leads to no recovery failures. In
contrast the DBoW2 relocalization method spent four times
as many time steps in the lost state and generated more
local maps. The ATE for the proposed approach is 0.337
m, about 39% less in comparison to the DBoW2 approach.
This indicates higher positional accuracy. In the LiM dataset,
a similar performance is observed where the proposed relo-
calization method on average, spent eight timesteps in lost
state and created three Local maps. In comparison, DBoW2
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TABLE II: Performance of the proposed PCB relocalization in comparison to DBoW2 relocalization. Only for sequences that had ground-
truth data, the ATE score and the number of frames matched to ground-truth are reported. Last row shows the median value calculated
from the averages obtained in the 10 experimental runs.

Method DboW2 Relocalization Module PCB Relocalization Module
Sequence Avg.

time (ms)
Avg. timesteps

in lost state (int)
Avg. local
maps (int)

ATE
(m)

Frames retained
for pose estimation

(int)

Avg.
time (ms)

Avg. timesteps
in lost state (int)

Avg. local
maps (int)

ATE
(m)

Frames retained
for pose estimation

(int)
MH01 3.208 12 3 0.357 3483 2.774 2 1 0.051 3642
MH02 2.936 10 3 0.201 2843 2.592 2 1 0.042 2901
MH03 3.570 13 4 0.952 2610 4.692 4 2 0.950 2609
MH04 2.957 11 3 0.553 1854 4.551 3 2 0.191 1948
MH05 3.907 12 4 0.526 2070 4.239 3 1 0.451 2169
V101 2.868 7 2 0.146 2784 4.486 4 2 0.166 2784
V102 3.265 10 3 0.111 1505 3.455 7 2 0.131 1587
V103 3.233 13 4 0.242 1877 5.402 8 3 0.251 1872
V201 2.779 7 2 0.068 2080 4.737 7 2 0.077 2084
V202 3.545 10 3 0.078 2111 3.386 7 2 0.068 2156
V203 3.093 13 6 0.390 1650 4.193 11 6 0.229 1449

FR2360 1.852 14 3 0.481 1052 2.631 12 3 0.383 1056
FR2PS1 2.819 16 8 0.346 1152 2.958 13 7 0.347 1295
FR2PS2 2.683 13 5 0.154 634 2.745 15 5 0.076 510
FR2PS3 2.804 17 5 – – 3.315 15 5 – –
ROBO0 2.885 13 5 N/A N/A 4.053 9 4 N/A N/A
ROBO1 3.065 11 4 N/A N/A 4.085 6 2 N/A N/A
ROBO2 3.422 14 6 N/A N/A 3.422 9 4 N/A N/A

MEDIAN 3.011 13 4 0.294 1973 3.817 7 2 0.178 2016

relocalization method created five local maps, requiring 13
time steps to recover global pose.

However, in sequences from VicR and FR2PS datasets,
the performance between the two relocalization methods is
similar. These datasets feature sequences of a drone and a
ground robot surveying two indoor rooms filled with obsta-
cles. For the VicR dataset, the average number of timesteps
in the lost state is seven, the number of new local maps
generated is three, and the ATE score is 0.154 m when the
proposed approach is used. Comparatively, for the DBoW2
approach, 10 timesteps are spent in the lost state, three local
maps are created, and the ATE score is 0.173 m. For the
FR2PS, the numbers were 14 timesteps, five Local maps,
0.269 m ATE score for the proposed. For DBoW2 approach
they were 15 timesteps, five Local maps and 0.327 m ATE
score respectively. In the sequence FR2PS3, a prolonged
mapping failure towards the end of the sequence prevents
recovery of global position by any method. Consequently,
ORB-SLAM3 initiates a new Atlas, leading to deletion of
the entire accumulated map.

This shows that the proposed relocalization method had
inherited the limitation of BA based pose-graph optimization
method that is known to fail ill-conditioned scenarios. Such
cases are seen in the VicR and FR2PS datasets that show
highly dynamic environments, and sometimes uncontrolled
movements of the camera. However, even though both meth-
ods generated the same average number of local maps, the
proposed method had a lower trajectory error in comparison
to DBoW2 method.

Fig. 5a shows the performance of the system on the
V102 image sequence from VicR dataset. In this case the
robotic system visited the same area several times. The pose
estimation generated by both the proposed and the DBoW2
approaches show good agreement with the ground-truth.
Fig. 5b shows the pose estimation for the FR2PS1 image

sequence from the FR2PS dataset, where both relocalization
methods struggled to recover global poses. This can be seen
from the discrepancies between the ground-truth trajectory
and the estimated ones. This is due to the sudden motion of
the agent carrying the camera, an ill-conditioned scenario in
which BA has limitations in recovering global pose [5].

The limitation of BA inherited by the proposed relocal-
ization method may be solved using techniques such as
Object SLAM [4], [10]. These methods are free from the
requirement of the BA method that requires sufficient overlap
in keypoints to map points observations between the query
and candidate keyframes to optimize the camera’s pose.
Testing these methods are beyond the scope of this paper.

V. CONCLUSION

This paper proposes a new multimodal keyframe descrip-
tor based on the semantic information of objects detected in
the scene and camera poses calculated based on monocular
images. A novel KPR method is developed to select appro-
priate keyframe candidates from the pose graph using a three
stage filtering algorithm. These two components, coupled
with a PnP solver, create a new short-term relocalization
pipeline within the framework of the ORB-SLAM3. Across
18 GPS-denied image sequences collected with drones and
ground robots, the proposed approach has exceeded the per-
formance of the bag-of-words method; this being validated
through a quantitative analysis. Future work will look at the
integration of 3D object pose and the information theory to
expand the proposed method into a multi-agent framework.
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(a) VicR sequence (b) FR2PS sequence

Fig. 5: Trajectory estimates with ORB-SLAM3 containing the modified relocalization method (blue) and DBoW2 version (red). Where
available, ground-truth are shown in grey.
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