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Chapter 1 Introduction

Personalized location-based service (PLBS) is one of the most important applica-

tions of Indoor Positioning Systems (IPS) that seeks to uniquely distinguish users and

provide them accurate location-based contextual information using sensory data obtained

from the surrounding environment. Robust and reliable PLBS is a lucrative field in the

LBS market since the majority of people spend nearly 90% of their time indoors [1] which

gave rise to demands for services such as indoor navigation [2], smart advertisement in

retail stores [3], patient-tracking in hospitals, smart homes [4, 5], proximity-tracing dur-

ing a pandemic [6], augmented reality [7], secure banking [8] and so on. Additionally,

IPS which are good at PLBS can also provide important statistics such as user density,

energy usage patterns which can improve and optimize space and energy management of

the indoor environment itself.

Modern smartphones are the most logical choice for providing location services to

users since in recent years, the sophistication of smartphones has increased ten-folds [9].

Often these handheld devices comes equipped with large screens, powerful CPUs, a

plethora of communication and sensing, and are relatively inexpensive. Thus, smart-

phones using IoT technology can form dense interconnected sensory networks ideal for

Indoor Positioning Systems. The ubiquitous nature of smartphones has established the

notion of tracking a user’s smartphone as analogous to tracking the user themselves [10].

Thus, it is no surprise that a large portion of IPS research is focused on smartphone

implementation with majority using Radio-Frequency (RF) technologies such as WLAN,

Bluetooth Low for localization. RF-IPS are easy to deploy, relatively inexpensive, and

require no modification on smartphones to operate [10]. However, these IPS lacks the

localization resolution necessary to track people in continuous space due to the instability

of radio signals. This prompted the use of “fingerprinting” techniques that localize users

in discrete locations by matching recorded signals to known patterns unique to each

reference location. Hence, the major theme of RF-IPS research has been concentrated in
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improving fingerprinting accuracy [11] but little consideration has been given in securing

person-specific identifiers and mobility patterns from third parties [12].

Privacy is a major concern since most modern smartphones can be uniquely identi-

fied with their MAC address and location services often run passively in the background.

The mobility trace of a person can be constructed by analyzing the historical trace of

the smartphone’s movement, both of which are unique to the user [13]. Furthermore,

incorporating privacy-preserving features has often been a post hoc addition to RF-IPS

that had a detrimental effect on the accuracy, latency, and complexity of the system [14].

Vision-based indoor positioning using the overhead camera is an approach to

achieve high-resolution localization without using facial features [15, 16]. So these sys-

tems are unable to distinguish people at the user level. Moreover, these system have to

be trained with annotated images to uniquely identify the user. This would not be a

pragmatic solution and privacy for real-world application.

The primary objective of this thesis is to design a Multimodal Indoor Positioning

System (MIPS) that can anonymously distinguish users and track them on the continuous

space in an indoor environment for use in PLBS. The proposed system tracks the mobile

device instead of the person through the fingerprints generated from BLE RSSI values and

the overhead camera based localization. The anonymity of the user is maintained through

the anonymous ID generated by BLE 4.2 (or BLE 5.0) and unsupervised object detection

and localization from the overhead camera. The system uses inexpensive hardware, open-

source software, and machine learning techniques to balance anonymization and tracking

accuracy. The bi-modal indoor positioning system was both implemented and tested

for various scenarios using a human subject study within the cyber-physical systems

laboratory. The performance of the proposed system was compared with BLE and video

based indoor localization and tracking.

This thesis report is organized as follows: Chapter 2 provides the relevant back-

ground study, Chapter 3 provides problem formulation, Chapter 4 provides the overall
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system design and working methodology, Chapter 5 provides details of the experiment

setup and methods of various components, Chapter 6 discusses the new dataset, met-

rics and experimental procedures. Chapter 7 provides the results and discussion on key

findings, and finally Chapter 8 presents the conclusions and potential future direction.
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Chapter 2 Background Study

In this chapter, we first discuss performance requirements of an Indoor Positioning

System in the context of our proposed system, followed by the taxonomy of various indoor

positioning systems, and review of existing indoor localization technologies. We discuss

the concept of Multimodal Indoor Positioning System, and review existing literature in

this space. Finally, we provide provide some common challenges associated with designing

Indoor Positioning Systems

2.1 Requirements/Performance Evaluation of Indoor Positioning System

The first step in designing an Indoor Positioning System is to define a set of cri-

teria (requirements) to qualitatively and quantitatively measure the performance of the

proposed system. There are many competing criteria one needs to balance in the design

of indoor-positioning systems that includes identifying the purpose, performance require-

ments, environmental factors, existing communication infrastructure, and human factors.

These topics have been covered extensively in literature. Gu et al. [17] defined 8 metrics

with a focus on user preference and their experience namely Security and Privacy, Cost,

Performance, Robustness and Fault Tolerance, Complexity, User Preference, Commercial

Availability and Limitations for IPS deployed with Personal Networks. Zafari et al. [10]

defined 7 metrics namely Availability, Cost, Energy Efficiency, Reception Range, Local-

ization/Tracking Accuracy, Latency, and Scalability as the key requirements applicable

to IoT-based Indoor Positioning Systems. Mautz [18] defined 16 competing criteria, key

among which are Accuracy, Coverage Area, Cost, Output Data, Privacy, Interface, Num-

ber of Users, Scalability, and Level of Hybridization as a general guideline for designing

an IPS for mass-market application. Basari et al. [19] defined 6 parameters namely Data

Rate, Positioning Accuracy, Coverage, Cost for users, Cost for Infrastructure, and Pri-

vacy for IPS in the context of commercial Location-Based Service (LBS). Morar et al. [20]
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defined 4 parameters namely Accuracy, Computing Time, Equipment, Properties of Ob-

jects in context of vision-based Indoor Positioning Systems. Yassin et al. [11] defined

2 parameters namely Position Accuracy and Range to compare and contrast between

multiple commercial positioning techniques that were available in 2016.

From the brief discussion above, it is evident that there are several metrics for

evaluating IPS that are common across the studies. Some of them are Accuracy, Latency,

Cost, Coverage Area, Scalability, Complexity and Privacy. Additionally, evaluation met-

rics used in Unimodal IPS are also applicable to MIPS provided certain conditions are

met. With these constraints in mind, we present Table 1 to briefly define the require-

ments/performance metrics applicable to MIPS composed of RF and Computer Vision

technologies.

2.2 Classification of Indoor Positioning Systems

A wide variety of classifications have been proposed to classify Indoor Positioning

System. One thing to note is that the taxonomies varied quite widely standard classi-

fication [21]. From recent survey papers, we observed that, many researchers attempted

to classifying Indoor Positioning Systems using two categories namely Technology and

Techniques [10, 18, 19, 21–23]. Usually the “Technology” category formed the first tier

of classification followed by “Techniques” which grouped a number of tools and tech-

niques employed with a certain “Technology’. Note that, majority of the IPS classified

with Technology and Techniques categories are implemented with RF (WLAN, BLE,

UWB) and Inertial Measurement (Accelerometer, Gyroscope, Magnetometer, Barome-

ter) technologies hence not directly compatible with MIPS composed with a Vision-based

positioning technology. Additionally, a limited number of published works attempted to

formally classify Vision-based IPS with the classification from Morar et al. [20] being the

most comprehensive to date. Furthermore, to the best of our knowledge, there exists no

formally accepted classification schema for MIPS (MIPS) since MIPS are composed of
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Table 1. Evaluation Metrics of an Indoor Positioning System

Metrics Definition
Accuracy A quantitative measure of how well the system is able to track

users movement on a local or global coordinate frame. De-
pending on the technique used accuracy may be defined dif-
ferently. For discrete positioning (Fingerprinting technique)
systems accuracy is defined as percentage of discrete loca-
tions correctly identified whereas for continuous positioning
(Vision based tracking) accuracy is defined as the percentage
of timestamps in which the IPS was able to keep track of an
user correctly. Accuracy is represented as percentage

Localization Error Also known as Localization Resolution, this metric is a quan-
titative term which measures the smallest displacement with
which an IPS can localize and track movement of an user with
high accuracy, usually greater than 90%. A smaller number
indicates better IPS. Usually represented as meter or centime-
ter.

Coverage Area Defined as the size of the observation area in which the system
can reliably detect, localize and track multiple users. Note
that coverage area does not necessarily mean the entire Indoor
area. Often time, it is a subset of the total available area.

Number of Users A quantitative measures which indicates how many concur-
rent users the IPS can serve at a given moment. Higher num-
ber is better.

Level of Hybridization Number of heterogeneous technologies that constitutes an
IPS. Note that, having more localization sensors does not
necessarily mean more accurate IPS. On the contrary linearly
increasing the number of sensing technology exponentially in-
creases the complexity of the IPS technology.

Latency A quantitative measure of how fast the IPS can provide lo-
calization service to multiple users. Latency is measured in
milliseconds.

Complexity A qualitative measures which ranks IPS based on the com-
plexity of tools and techniques used.

Privacy A qualitative measures which ranks IPS based on its capabil-
ity to preserve user’s data privacy.

Cost A quantitative measure which ranks IPS based on the cost
of equipment and technology used. Usually represented in
dollars.
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heterogeneous technologies, techniques, infrastructure, and, sensory devices that requires

more more than two categories for proper classification. In the following subsections, we

briefly discuss some of the proposed taxonomies for IPS and introduce a new classification

schema for MIPS.

2.2.1 Classification based on technology. One of the earliest taxonomy for

classifying Indoor Positioning System is based on the “Technology” category is from

Gu et al. [17] who classified IPS based on the technology used in two tiers. In tier-1, 6

technology groups were defined namely Infrared, Vision-based, Magnetic, Audible Sound,

Ultrasound, and Radio Frequency. The Radio Frequency group was further divided

into 5 nodes namely Ultra Wide Band, RFID, WLAN, Bluetooth and Sensor Networks.

Zafari et al. [10] categorized IPS into 8 technology groups viz. Bluetooth, ZigBee, RFID,

Ultrawide Band, Visible Light, Acoustic Signals, and Ultrasound. The authors mainly

focused on technologies for localization and did not consider vision-based positioning

systems.

Mautz [18] proposed a two-tier taxonomy based on 13 technologies in tier-1 and

4 evaluation metrics in tier-2 with the assumption that Indoor Positioning Systems de-

ployed in different indoor environments but using the same technology can be compared

with one another. The technologies defined in tier-1 in this taxonomy are Cameras, In-

frared, Tactile, Sound, WLAN, RFID, Ultra Wideband, GNSS, Pseudolites, Other RF,

Inertial Navigation, Magnetic Systems, and Infrastructure Systems. In a meta-review,

Mendoza-Silva et al. [21] proposed a general-purpose classification taxonomy based on 10

technologies namely Light, Computer-Vision, Sound, Magnetic Fields, PDR, Ultrawide

Band, Wi-Fi, Bluetooth Low (BLE), RFID, Cellular, WSN, and Zigbee.

We present Tables 2 and 3 which briefly compares a list of common technologies

used in Indoor Positioning system since early 2000. While an exhaustive review of all

known IPS technologies is beyond the scope of this work, interested readers are referred

to [10] for RF-IPS, [20] for vision-based Indoor Positioning Systems, [11,17] for a general
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overview and [22] for cooperative and multi-technology Indoor Positioning Systems.

2.2.2 Classification based on techniques. The IPS performance metrics

vary widely with the type of sensing technologies. Hightower et al. [24] proposed the ear-

liest taxonomy for classifying Indoor Positioning Systems based on “Technique” where 15

systems were classified into three categories namely Triangulation, Proximity, and Scene

Analysis. Similar one tier classification was also proposed by Liu et al. [25] in 2007 with

the addition of a second tier that further stratified Triangulation into two sub-groups

namely Laterartion and Angulation. Li et al. [23] also proposed a classification based on

localization techniques. In tier-1, there are three groups namely Geometric, Database

Matching and Dead-Reckoning. The authors subsumed “Proximity” based on position-

ing as a group of “Geometrical” indoor positioning systems whereas other authors kept

“Proximity” as a separate group. In contrast to the above Mendoza-Silva et al. [21] de-

fined the “Technique” category based on localization signals measured by the receiving

devices and proposed categorizing Indoor Positioning Systems into four groups namely

Angle of Arrival, Time of Arrival, Time Difference of Arrival and Received Signal Strength

(RSS). These taxonomies are primarily for radio-based localization, for computer-vision

based Indoor Positioning Systems, Morar et al. [20] did a 4 tier classification taxonomy to

include vision-based positioning system, that was further categorized based on technique

of image analysis viz. Traditional Image Analysis and Artificial Intelligence.

2.2.3 Proposed taxonomy. In this section we further extend prior taxonomies

to include some new elements such as multi-modality, data processing at the edge, and

mode of operation. The proposed schema is hierarchical in nature with each subsequent

level having a causal relationship to the preceding level as shown in Figure Figure 1.

The 7 technologies chosen within “L1:TECHNOLOGY” are based on the tech-

nology trend discussed in recent comprehensive reviews [10,11,20,22]. Wi-Fi, Bluetooth

Low (BLE), RFID and Ultra Wideband were the most prevalent radio-based technolo-

gies with Inertial Measurement Systems being the most commonly integrated technology
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Table 2. Comparison of Technologies in IPS - 1

Name Description
WLAN(Wi-Fi) IEEE 802.11 standard. Average range - 35 meters. Av-

erage localization resolution > 2 meters. Operates on 2.4
Ghz and 5 Ghz frequencies. Common metrics - RSSI, CSI.
This technology is supported by most most modern smart-
phones. Common drawbacks include expensive hardware
and complex algorithm makes scaling IPS difficult with
this technology. Radio maps are scene specific and accu-
racy severely affected by phenomena such as NLos, mul-
tipath, device heterogeneity. Wi-Fi/WLAN draws more
battery power in comparison to BLE, RFID.

Bluetooth Low (BLE) Upgraded version of Bluetooth 2.0. Effective range be-
tween 3-10m. Unlike WLAN, BLE is designed specifi-
cally for battery-operated devices and machine-to-machine
communication. Operates on 2.4Ghz frequencies on chan-
nels 37, 38 and 39. Common metrics - RSSI,AoA, ToF. In-
expensive modules, low power draw compared to WLAN.
As RSSI data can be obtained, most algorithms applicable
to WLAN are also applicable to BLE based IPS. Battery
can last well over a year. Major drawback includes poor
performance in micolocalization in comparison to WLAN,
slower update rate, severe performance drop in NLoS, mul-
tipath, multi-user. RSSI data varies heavily from device
to device.

Zigbee Mean range 10-100m depending on power draw, Oper-
ates on unlicensed 2.4Ghz frequency. Common Metrics
- RSS, RSSi. Inexpensive, allows directional communi-
cation. Can also operate on beacon mode but accuracy
in this mode is low. Zigbee’s major drawback is its op-
erational frequency interferes with other communication
networks in the indoor environment. Draws more power
than BLE since it requires constant bidirectional hand-
shake which depletes batteries very fast.

Ultra-Wide Band (UWB) Ultra-short pulses with time period < 1 nanoseconds.
Mean range between 15m - 50m, 460Mbps throughput, low
power consumption comparable to BLE. Common metrics
- ToA, TDoA. Highly accurate positioning in comparison
to WLAN, BLE and Zigbee. Signals can pass through
walls and is robust to multipath effect due to short tem-
poral existence. Major drawback lies with requirement of
specialized hardware called tags and very accurate timing
control which makes UWB hardware very expensive.
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Table 3. Comparison of Technologies in IPS - 2

Name Description
RFID Mean Range 200m. 1.67Gbps throughput, low power draw compa-

rable to BLE and UWB. Requires specialized hardware called tags
which are encoded with data that needs to be read by a device. Tags
can be of three types. Passive which draws power from the reader
device to function, Active which are battery operated and functions
similarly to a BLE beacon and, Semi-Passive which upon receiving
the reader‘s signal, broadcasts the stored data. While being very
inexpensive, RFIDs have very short communication range, approxi-
mately 1-2 meters which makes it incompatible for large scale Indoor
Positioning applications. This technology integrates very easily with
other IPS technologies for Mulitmodal Indoor Positioning Systems.
RFID reading hardware is not common in most smart devices.

Ultrasound Operates on > 20kHz soundwave. Usually has low power draw.
Common metric - ToF. Ultrasound based IPS can achieve decimeter
level accuracy but only for very specific setup. However, accuracy
drops drastically in NLoS conditions and does not generalize well to
multi-user scenario.

2D RGB Image Range depends on camera’s field of view and height (for overhead
cameras). Common resolutions is 640 by 480 and working FPS is
30. RGB images are represented as 3D tensor and are readily usable
with Deep Neural Networks. Using GPU on certain IoT devices,
images can be processed to localize and track multiple users at cen-
timeter level accuracy with high reliability. High quality cameras
in modern smartphones greatly alleviate need for expensive cam-
era which makes this technology suitable for large scale application.
Major drawback lies in the fact that object tracking is not possible
without continuous image stream but continuous image acquisition
drains battery very fast in mobile devices. Deep Learning algorithm
using vision requires a substantially large dataset which is labor and
time intensive to prepare. Facial image based person recognition is
privacy-invasive but without facial images, this technology cannot
directly distinguish an person uniquely from a group.

Cellular This technology encompasses GSM, LTE, 5G and other form of mo-
bile communication which are not specifically designed for Indoor
applications. In fact Cellular networks are never used by themselves
since Cellular IPS relies heavily on strong RSS from cell towers which
seldom reaches the target device in indoor environment. Positioning
accuracy is well-over 50 meter which makes it further incompatible
for indoor applications. Common metric is RSS.
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with radio-based Multimodal Indoor Positioning. Computer Vision and Infrared Depth

Measurement are also included into the strata since a substantial number of recent IPS

are vision-based that determines users location by extracting location information from

2D RGB images or point-cloud generated by depth cameras using Machine Learning and

Deep Learning techniques.

“L2:NUMBER OF SENSORS” is the next logical level in the taxonomy which

Figure 1. Proposed Classification Schema for Indoor Positioning Systems
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takes into account the number of heterogeneous technologies constituting a Unimodal/Multimodal

Indoor Positioning System. Our justification for considering the number of technologies

first rather than following the conventional rule of placing “TECHNIQUES” in second

level is the fact that, the presence of heterogeneous sensors directly dictates the tech-

niques and algorithms that can be used in a positioning system.

For example, Faragher and Harle in [26] developed one of the first Bluetooth-Low

based Indoor Positioning System using only BLE Beacons and Android smartphones.

Here the authors used two algorithms viz. Proximity and k-Nearest Neighbour. Murata

et al. [2] developed a Multimodal Indoor Positioning system as an assistive technology

for the visually impaired with BLE and IMU for a large-scale multi-floor navigation

application. Here the authors used a modified probabilistic technique that fused data

from BLE and IMU to correctly predict which floor a user is currently situated on.

In [26], the authors where only restricted to using techniques from “Geometric”

or “Scene Analysis” group in Level L3 (refer Figure 1) whereas the authors in the [2]

were free to use techniques under “Pedestrian Dead Reckoning” along with techniques

from either “Geometric” or “Scene Analysis” group to implement their solution. Having

heterogeneous technologies raises the complexity and cost of the system which gives

further credibility to classify a proposed positioning system with the number of sensors

first before deciding upon which techniques to use for implementation.

Levels L3 and L4 depicts the “TECHNIQUES” and associated “LOCALIZATION

ALGORITHM” groups which can be used to further classify an Indoor Positioning Sys-

tem based on its constituent sensing technology and algorithm used determine an user’s

position. Note that, a group in L3 may be associated with multiple groups in L4. For

instance, supervised classification algorithms such as kNN, SVM, Random Forest from

“Machine Learning” and RNN, Autoencoders from “Deep Learning Models” in level L4

can be attributed to level L3 “Scene Analysis” group.

Level L5 “LOCATION OF DATA PROCESSING” strata takes into account the
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location where data is processed for obtaining localization information. Three groups

are considered in this strata as shown in Figure 2. Blue solid lines indicates constant

bi-directional communication while dotted blue lines indicates periodic communication.

The “Server” group (Figure 2a) classifies those Indoor Positioning System which

requires client devices to offload raw sensory data to an offsite server for running local-

ization algorithms [27,28]. IPS falling under this category usually achieves near real-time

performance but at the cost of increased infrastructure cost, communication complexity

and suffers from major privacy concerns since the data sent out from user’s smart de-

vice often contains a person-specific identifier (name, facial image, smartphone‘s MAC

address) which can be then be used to create a detailed profile of an individual that can

be used to compromise people privacy and security [14]. These IPS are predominantly

centralized systems.

Figure 2. IoT Architectures
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The “Client device” group (Figure 2b) classifies those Indoor Positioning System

that performs localization and tracking computation exclusively on the user’s smart de-

vice and relies on periodically communicating with a cloud server for updating environment-

specific contextual information [29]. These positioning systems usually operate in real-

time speeds, are inherently more privacy-friendly than their “Server” counterparts but

comes at a cost of reduced localization accuracy and higher system latency due to com-

putational resource constraints. Additionally, running all calculations on smartphones is

detrimental to their battery life which reduces long-term usability and reliability. These

IPS are predominantly decentralized systems.

The “Edge Device” group (Figure 2c) takes into consideration the emerging archi-

tecture where smart device offloads sensory data and receives position estimation directly

from a local-machine called “Edge Device” [23]. “Edge Devices” are small single-board

computers which are usually inexpensive, supports both wired and wireless communica-

tion (Wi-Fi, BLE) and sometimes contains GPUs for executing AI models in near-real

time speeds. Using IoT communication protocols, Edge devices along with client devices

can form a densely interconnected network that is conducive for large-scale applica-

tion [30]. IPS within this group can take a hybrid approach between centralized and

decentralized modes of operation and are generally faster than “Server” IPS due to the

low latency of communication between the local machine and client devices.

Another novel strata introduced in the proposed classification is Level L7 “USER

IDENTIFICATION DATA” which aims to classify Indoor Positioning Systems based on

the type of data used to identify a user(s) from a group of people in order to provide

them with personalized location-based contextual information. We incorporated this

stratification due to the fact that how an Indoor Positioning System identifies a user

directly dictates the communication technology, the constituent sensing technologies, the

level of data security, and the amount of information that will be retained by the primary

computation device to provide location estimations.
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Within this strata, Indoor Positioning Systems are classified into two groups

namely “Direct Identification” which as the name implies, requires the user to provide

personally identifiable information (i.e. facial image for unique recognition) to receive

localization information. Most commercial Indoor Positioning System falls under this

category. The second group named “Anonymized Identification” classifies IPS which dis-

tinguishes users with pseudo-identifiers (i.e. Integer numbers, Alphanumeric sequences)

rather than their personal information. For example, Zaho et al. [31] represented 16

participants with Integer numbers. Domingo et al. [32] represented 3 users with English

alphabets. These two IPS would be classified under the “Anonymized Identification”

group since none of the two systems identified users’ using their personal information.

2.3 Common Signal Metrics in Radio-Frequency Based IPS

From the recent comprehensive reviews [10,21,22] on Indoor Positioning Systems,

it is evident that a majority of proposed IPS are built with Radio-Frequency technology

namely WLAN(Wi-Fi), Bluetooth, Ultra Wideband and RFID. In this section, we briefly

introduce the common types of signal measurement techniques used in these systems

since the choice of signal metric directly dictates which category of algorithms may be

used for localization and tracking. It is to be noted that all of the following signal

measurement techniques accumulates error from phenomena such as multipath fading,

non-linear propagation loss, signal attenuation due to human body and obstacles, loss

of signal due to occlusion, measurement disparity for the same location due to device-

to-device hardware heterogeneity which are inherent all form of RF technologies [17].

Furthermore, signal sampling rate at the user’s device significantly affects the quality of

measured signals for all of the following measurement techniques.

2.3.1 Received signal strength indicator (RSSI). The most widely used

signal measurement metric Radio Signal Strength Indicator (RSSI) is a relative measure

of the strength of the RF signal received by a node (i.e. user’s smart device) from one

or more multiple transmitters (Wi-Fi Access Points, Bluetooth Beacons). This metric
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is often confused with Relative Signal Strength (RSS) which is a numeric measure of

actual power of the received signal expressed in decibel-miliwatts (dBM). RSSI is the

most famous and most common measurement technique employed in Indoor Positioning

Systems since measuring RSSI of received signal requires no additional hardware and can

be used in all algorithms classified under “Geometric” and “Scene Analysis” groups [23].

It is generally accepted that RSSI values has a theoretical log normal relationship with

distance from the RF transmitter. Mizmi et al. [33] represented this relationship with

the following formula

RSSI(d) = A− Lo − 10nlog10(d/d0) + LSH (1)

Here RSSI(d) is the relative measure of the RF signal perceived by the user’s

device situated at a distance of d meters from the RF transmitter (i.e. Base Station, AP,

BLE Beacon). RSSI(d) has no fixed scale and can take a value between 0 to 100 or -100 to

100 with a lower number indicating close proximity to the RF transmitter and vice-versa.

The constant Lo is the “average propagation loss” calculated from the RF transmitter at

a distance of 1 meter [34] and A is a constant value which depends upon the transmission

power of the transmitter and antenna gains of the receiving device [33]. Note that, in

real-world indoor scenarios, RSSI measurement does not follow the relationship depicted

in Equation 1 when there is a significant distance between the user’s device and the RF

transmitter.

2.3.2 Angle of arrival (AoA). Zafari et al. [10] define Angle of Arrival (AoA)

as a signal measurement technique that determines the angle at which a user’s device

received a transmitted signal using a multi-array antenna. This is achieved by calculating

the difference in arrival time of a signal reported within the constituent antenna array.

This signal measurement technique allows localization with as little as two angle mea-

surement from two RF transmitters for 2D localization and three angle measurements
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from three RF transmitter for 3D localization. However, AoA requires a special multi-

array antenna which is not common in smartphones and requires constant calibration

which is impractical for real-world indoor applications. Additionally, compared to RSSI,

AoA measurement degrades more as one moves further away from the RF transmitter.

2.3.3 Time of flight (ToF)/Time of arrival(ToA). This measurement tech-

nique calculates the signal propagation time between user’s device and RF transmitter

which can then be linearly correlated to distance. In clean Line-of-Sight (meaning no

obstacle between receiver (Rx) and transmitter (Tx)), condition, the accuracy of lo-

calization using ToF/ToA can be significantly higher than RSSi based measurements.

However, ToF measurement requires very strict synchronized timing between Rx and

Tx, which in a multi-user dynamic condition is not possible. Furthermore, this technique

can only be used for algorithms under the “Geometric” category. Finally, significant

error in measurement is accumulated in No Line-of-Sight (NLoS) condition, a condition

most representative of real-world indoor scenarios.

2.3.4 Time difference of arrival (TDoA). This measurement technique cal-

culates the difference in signal arrival perceived by the receiver from multiple RF trans-

mitters. At minimum three RF transmitters are need and all of the transmitters must be

time-synchronized is needed to measure TDoA at the receiver. Just like ToF, the qual-

ity of TDoA measurement depends upon the sampling rate, LoS and signal bandwidth.

Note that, TDoA is not suitable for BLE Beacon-based IPS since BLE Beacons since, be-

yond a configuration stage, BLE Beacons does not support bidirectional communication

which excludes TDoA measurement from most BLE based Indoor Positioning System

applications.

2.4 Techniques in Indoor Positioning Systems

In the following subsections we briefly review the Geometric, Scene Analysis and

2D/3D Image Analysis techniques which are frequently used in Radio-Frequency based

and Vision-based Indoor Positioning Systems.
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2.4.1 Geometric techniques. This category of techniques encompasses posi-

tioning algorithms that utilizes the relationship between the measured signal property

(i.e. RSSI) to distance from RF transmitters and, basic geometry to localize one or more

users [11]. These methods are most suitable when the scenario can be modeled with high

certainty. However, such modelling is nearly impossible due multitude of factors such

as NLoS condition, multipath propagation, dynamic movement of people and obstacle

which makes it difficult to establish an unique propagation model to capture the dynam-

ics of the RF signal which by its own nature is highly nonlinear in nature. Three of the

most common Geometric Techniques are briefly discussed below.

Trilateration (3 points Multilateration) algorithm is the most well-known of Ge-

ometric techniques which assumes the location of a user’s device lies at the intersection

point of three hypothetical circles whose centers are the location of three RF transmitters

and the radii of the circles equals to the distance between the user’s device and RF trans-

mitters (Figure geometric a). Furthermore, trilateration assumes clear LoS condition and

also assumes that the radii of all three circles are equal. The measured RSSI data is con-

verted to distance using propagation model (log-normal model from Equation 1) which

gives the position of the user with respect to a global reference frame. Most practical

IPS will have more than 3 RF transmitters in which case multiple intersection points are

obtained which then converts the problem to a nonlinear optimization problem requiring

good initial estimates which for practical cases may not be easy to determine prior to

localization [11]. Multilateration localization is computationally very fast but has poor

accuracy in comparison to Fingerprinting techniques due to its heavy dependence on LoS

condition [26,35].

Proximity algorithm usually uses RSSI values to infer user’s position by calculating

a “relative” distance between the user’s device and the RF transmitter. Usually this

distance is then converted to a categorical attribute such as NEAR, FAR, VERY FAR

which is then used to provide environment specific contextual information (i.e. marketing
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Figure 3. Geometric Techniques
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alerts). The sphere of influence around the single RF transmitter is called a geofence [10].

Proximity based technique is the most simplest, cheapest solution to implement with the

least number of RF transmitter requirement but with the highest uncertainty in the

location estimation.

Weighted Centroid (WC) algorithm (Figure c) is a derivative of Multilateration

technique where the radii of the hypothetical circles are not equal but are calculated as

“weights” whose value is inversely proportional the log normal distance obtained from

Equation 1. User’s position would be biased towards the RF transmitter that has the

lowest RSSI value (distance is inversely proportional to RSSI).Subedhi et al. [35] defines

Weighted Centroid algorithm using the following set of equations

Xw =
m∑
i=1

Xi ×
wi∑m
i=1wi

Yw =
m∑
i=1

Yi ×
wi∑m
i=1wi

wi =
1

di

(2)

Here (Xw, Yw) are the estimated coordinates, di is the log normal distance calcu-

lated between the user’s mobile device and the ith and m is the number of RF transmitters

accessible by the user’s mobile device. WC localization technique is deterministic and

has very low computation overhead. However, this technique shares the dependence on

LoS similar to all other ranging based technique.

2.4.2 Scene analysis. Scene Analysis (a.k.a Fingerprinting) techniques are

data-driven methods which became quite popular for radio-frequency-based Indoor Po-

sitioning Systems due to their robustness to NLoS condition and better generalization

to dynamic indoor environments in comparison to their Geometric counterparts. This

category of technique comprises a wide berth of algorithms that can broadly be classified

into three groups namely Machine Learning, Probabilistic and Deep Learning.

While the internal mechanics of these algorithms vary, in principle all algorithms
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under Scene Analysis group are essentially supervised classification techniques that takes

in a vector of signal measurements for each of the accessible RF transmitters, com-

putes its difference with known reference measurements, and finds the location point

that closely matches a known reference measurement. Multiple authors described Scene

Analysis techniques as three-stage process viz. Offline Database Building, Generation of

Localization Features, and Online Prediction.

In the Offline Database Building stage, multiple measurements of RF signal met-

rics (RSSI, ToA, AoA) from all accessible RF transmitters (BLE Beacons, Wi-Fi routers)

are collected at a given time and at a particular location to discover the spatio-temporal

relationships between the radio signals and the target positions for a particular indoor

scenario [21]. Note that, there is no hard consensus on the size of the database but

it is generally accepted that for ML and DL methods, a considerably large database is

required. Collecting such a large database is both time and resource-intensive which is

one of the major drawbacks of Scene Analysis techniques [36].

In the Generation of Localization Features stage, signals are usually preprocessed

to reduce noise, discard missing measurements and then feature extraction algorithms

are employed that generate statistical metrics such as 4-point moving average [26], ex-

ponential moving average [37], variance [38]. It is to be noted that, what features to

generate depends on the type of data, pre-processing techniques chosen and prediction

algorithm employed during the inference stage.

For instance, Zafari et al. [39] developed an Indoor Positioning System using

BLE beacons where raw measurements from two accessible beacons were fed through a

Bayesian model to predict user’s location. Feature generation from raw RSSI measure-

ments was accomplished into two-step process. First raw measurements were fed through

a moving average filter and then further refined with a Kalman Filter for additional

smoothing. In another implementation, Subedhi et al. [37] performed an exponential

moving average on raw RSSI measurements followed by a Weighted Centroid algorithm
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to generate distance as features for each accessible BLE beacon. Contrasting to the

former two examples authors in [33] moving the average filter to raw RSSI values and

then converted the processed values into a binary representation which significantly im-

proved inference time in the prediction stage. This was achieved since in Scene Analysis

techniques, high dimensional data may arise when a lot of features are generated (i.e 10

features may be generated for 5 accessible RF transmitters by finding mean and standard

deviation for each) that results in high computational load during inference stage [36].

How RSSI data may be represented also forms a method of feature extraction

in RF-based Indoor Positioning Systems. In this regard, Torres-Sospedra et al. [40]

developed a new feature generation technique called “powered” which is a modified Min-

Max normalization technique coupled with a power factor that converted raw RSSI into 0-

1 scale. The authors demonstrated that “powed” representation preserved the theoretical

lognormal relationship between RF signal to distance better than simply representing

RSSI values using traditional scales (-100 to 100). Note that, while a plethora of feature

extraction techniques is available it is crucial to recognize that the extracted features must

capture the spatial diversity between adjacent target location points and are temporally

stable [23, 37]. This is very important since ML and DL algorithms through recursive

training aims to learns the spatio-temporal relationship between measured signal to actual

locations from the generated database. If two adjacent location points do not show

enough variation in the generated features, then ML and DL models will fail to distinguish

between them causing high level of inaccuracy during inference stage [36].

In the Online Prediction stage, real-time signal measurements are continuously

taken by the user’s mobile device from all accessible RF transmitters and processed to

extract features. Algorithms such kNN [41], bayesian estimator [42], Autoencoders [43]

can then be used to infer the user’s position either as a unique (X,Y) coordinate or as a

probability of occupying a certain region on the map.
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2.4.3 2D/3D Image analysis. The core principle of 2D/3D Image Analysis

techniques in Indoor Positioning Systems is to analyze image data using predetermined

feature descriptors to find the Regions of Interests (RoIs) in the image which are occupied

by the objects of a target class in order to localize their position in the image and

subsequently track their trajectory over time. In computer vision literature, these two

tasks are called Object Detection and Multi Object Tracking which may be performed

jointly in a single model [lu2021] or separately as a sequential two-step process [44]. RGB

or Grayscale images (2D Images) with/without depth information (a.k.a RGB-D or 3D

Images) captured using traditional front-facing cameras, perspective cameras, overhead

cameras and infrared cameras have been used in 2D/3D Image Analysis techniques and

the cameras may be static or mobile which determines the type of algorithm suitable for

application. Key challenges to 2D/3D Analysis techniques are change in illumination,

variable pose, change of aspect ratio (apparent change in shape) of moving objects, short-

long term occlusion of objects in crowded scene.

Object Detection, the first of the two tasks in 2D/3D Image Analysis techniques is

defined as a sequential two step process in which the location of objects are determined

in the image and then classified into pre-defined groups [31]. Using the information

from Object Detector, a Multi Object Tracking (MOT) algorithm performs the tasks of

assigning identifiers to the detected objects and then tracking their trajectories over time

in a image sequence [45]. An image sequence is defined as series of images identified with

incremental identifiers that preserves the chronological order in which they were acquired

by the camera unit. Individual images in an image sequence may also be referred to as

frames.

Traditional Image Analysis techniques such as stereo foreground-background seg-

mentation [46], Histogram of Oriented (HoG) depth features [47], local maxima search [48]

has been used to determine if a RoI in an image resembles a known feature for identifying

an object such as head and shoulder of a human being [46]. One of the earliest examples
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in this class of techniques is the work of Park and Aggrawal [49] where authors used

foreground-background image segmentation technique to train a head-orientation binary

classifier in detecting a person from a number of blobs (small cluster of pixels of known

intensities) and finding their relative position with respect to one another. Nakatani et

al. [50] employed foreground-background subtraction technique along with noise reduc-

tion to extract four features namely body size, hair color, hairstyle, and hair whorl used

to identify ROI that contains a person and determine their position by computing the

centroid of the ROI box determined using the histograms of the person’s area.

Artificial Intelligence (AI) based ROI detection techniques have largely super-

seded traditional image processing techniques due to their capability of learning descrip-

tive features of objects of multiple classes directly from the image data which greatly

alleviated the need for complex, scene-specific feature extraction models [20]. AI models

enable complex scene understanding for advanced vision tasks such as joint detection and

tracking, image segmentation; faster detections in multi-object scenarios, better general-

izability to a wider variety of indoor scenarios, and deployment into IoT edge devices for

real-time applications [51]. The most representative model used with DNN based Object

Detectors is Convolutional Neural Network (CNN) which has become very popular due

to its capability to learn descriptive features using a network of convolution layers [52]

and leverage large-scale transfer learning using very large annotated databases such as

Imagenet. Some well known examples of CNN based Object Detection algorithms are

AlexNet [53], You Only Look Once (YOLO) [54], SqueezeNet [55] and so on.

Mutli Object Tracking (MOT) algorithms within 2D/3D Image analysis tech-

niques focus on solving the problem of tracking multiple detected objects over time. This

problem is more difficult than Single Object Tracking since the number of objects varies

over time along with other issues such as frequent long-term, short-term occlusions which

causes track fragmentation, nonlinear rise in computation complexity with linear increase

of moving objects, initialization and deletion of tracking identities and so on.
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There are two major categories of MOT algorithms based on how they initialize

tracklet ids and usage of future image frames. The first is the Detection-Free Tracking

(DFT) which requires manual initialization of tracklet ids in the first frame and utilizes

images from future timesteps to maintain object tracking. Though these features are not

representative of real-world condition [45], DFT trackers are generally better at tracking

objects in difficult conditions since they incorporate information from both past and fu-

ture frames [56]. On the other hand, the Detection-Based Technique (DBT) techniques

approaches the MOT problem as a continuous assignment problem in which tracking ids

assigned to some detected objects in a previous frame is recovered in the current frame

based on the similarity between the detected objects in current frame to detected objects

in past frames [57,58]. DBT techniques are suitable for real-time application since these

techniques only considers frames up to the current timestep which makes them faster

than DFT technique but DBT techniques suffers from two major issues. The first is

the reliance on the object detector’s ability to detect target objects consistently since

the bounding boxes provided by Object Detectors forms the targets from which MOT

determines affinity of detected objects with previously established tracks. Hence, recur-

rent missed detections by Object Detector causes track fragmentation which degrades

performance [59]. The second major issue lies with the issue of restarting trajectories in

event of track fragmentation, which is commonly known as Identity Switch. ID-Switch is

particularly problematic in scenes where high number of occlusions, illumination change,

erratic motion of camera is present.

2.5 Review on Multimodal Indoor Positioning Systems

To the best of our knowledge, Yassin et al. [11] and Pascacio et al. [22] attempted

to formally categorize Multimodal Indoor Positioning Systems (MIPS). Based on their

work and on the basis of common technologies and techniques introduced in Section
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2.2, MIPS solutions may be classified into 4 categories as shown in Figure 4. RF rep-

resents the Radio-Frequency technologies (i.e. Wi-Fi), PDR represents the techniques

used to measure user’s gait and relative displacement using measurements from Inertial

Measurement Unit (IMU) embedded into most smartphones (i.e.accelerometer, gyro-

scope) and Vision represents the tools and techniques related to 2D/3D image-based

user localization. As our system proposed system is poised to track multiple users with

privacy-friendly identifiers at sub 1 meter level accuracy in an edge device at near-real

time speed, we emphasize on these factors for the following illustrative examples.

2.5.1 RF-PDR. These MIPS solutions are designed to enhance accuracy of

position estimation from radio signals with user’s motion estimate from IMUs using

Linear and Nonlinear State Space estimators (refer Figure 1, L4) as Kalman Filter,

Extended Kalman Filters, and Unscented Kalman Filters.

The MIPS proposed by Wang et al. [60] is a classical example of RF-PDR MIPS

where the authors combined RSSI measurements from 5 Wi-Fi routers with the distance

covered between two successive RSSI recordings measured with an accelerometer and to-

pography of the observation area with a Particle Filter algorithm to improve localization

accuracy by as much as 25% compared to applying a Kalman Filter estimate directly

onto RSS measurements. Note that, the authors in [60] did not consider multi-user sce-

narios nor indicated to the speed of the combined system. Resolution of localization was

greater than 5 meters at 90% accuracy level.

In another implementation, Deng et al. [61] combined RSSI from eight Wi-Fi

access points to user’s heading estimation calculated as a quaternion using two sequential

Extended Kalman Filters. They also developed a KDE model which recursively updated

the covariance matrix of the Kalman Filter to accurately capture the spatiotemporal

relationship between RSSI signals and actual position. The authors demonstrated that

with the inclusion of PDR data augmented with apriori knowledge of certain landmarks

on the scene, mean localization error was reduced by as much 76.9% for when localization

27



Figure 4. Classification of Multimodal Indoor Positioning Systems

resolution was 2.40 meters. However, the system only serviced one user in an experimental

area of size 43.5 meters x 11.2 meters with no information as to the speed of the proposed

system nor the identifier used to track the user.

Murata et al. [2] implemented a MIPS using RSSI from BLE beacons and PDR

data from smartphone as an assistive navigation tool for the visually impaired in a

large observation area (21, 00m2) that included three multi-story buildings and an un-

derground passageway. The core algorithm was a combination of a Particle Filter based

motion model and a Bayesian fingerprinting technique optimized to run at near-realtime

speeds in a mobile device. To achieve further improvements, the authors also introduced

a state-machine to check for integrity of the system, combined barometric pressure sensor

readings and RSSI values in a novel conditional motion model to not only reduce local-

ization error during floor transition but actually predict the user targeted floor transition

and added an adaptive RSSI signal calibration method based on a modified Kalman Fil-

ter to compensate for the offset between measured signal strength in online phase with

the stored offline database. Data from 218 beacons spaced 5 to 10 meters apart was col-

lected with two Apple iPhones during open-hours to simulate real-world adverse signal

propagation conditions. 10 visually impaired people participated in the experiment with
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a mean localization error of 3.2 meter at 95-percentile. The system had an effective up-

date rate of 0.14 seconds. This experiment did not consider multi-user condition rather

had the 10 participant take turns in navigating through the test path one at a time.

2.5.2 RF-PDR-Vision. Dumbgen et al. [62] implemented a MIPS in which

authors recorded the return trip time (RTT) from Wi-Fi access points (AP), RSSI from

BLE beacons, heading estimation from IMU and visual cues obtained by a smartphone’s

camera and, combined all the data together in a offline server to perform position es-

timation by maximizing a chain of probability functions dubbed “Conditional Random

Fields”. A major advantage of this MIPS was its independence from creating lengthy Ra-

dio Maps and online parameter calibration when a valid visual cue was found. While the

authors mentioned presence of multiple individuals during training and testing dataset

collection and the size of the observation area was greater than 10 meters by 30 meters,

only one user was localized by the system in an offline manner. Furthermore, user iden-

tification during runtime was not considered. The authors showed that their proposed

MIPS had an average mean localization error of 2.3 meters and concluded that Wi-Fi +

IMU + BLE combination performed much better than Wi-Fi + IMU and Wi-Fi+BLE

combination.

2.5.3 RF-Vision. This category of Multimodal Indoor Positioning System com-

bines RSSI data from RF-based technology to position estimate obtained from image pixel

using a variety of techniques. Our proposed method falls within this category.

Sun et al. [63] proposed a multi-modal indoor positioning system that used crowd-

sourced Wi-Fi positioning data to optimize a RSSI triangulation model and image data

from an overhead panoramic camera to track an user in two distinct indoor environments.

For the corridor scene, the optimized propagation model was used to estimate the user’s

position and when the user entered the room scene, the user’s was first detected using

a background subtraction technique followed by localizing the user using a three-layer

Artificial Neural network which took the 2D pixel coordinate as input and gave user’s
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position on the world coordinate frame as output. For an experimental area of 51.6 meters

x 20.4 meters, the mean accuracy of the Wi-Fi positioning system was 5.79 meters and

the mean accuracy of the vision-based positioning system was 0.84 meters. The combined

mean accuracy was 3.15 meters. However, all RSSI data were collected with a smartphone

in a fixed orientation and the camera positioning was tested only for one person at a time.

Multi-user interaction and user identification was not considered.

Zhao et al. [64] proposed a novel MIPS in which images from a smartphone‘s

front-facing camera, heading estimation from its IMU and the Channel State Informa-

tion (CSI) measurement of a 5.0 Ghz Wi-Fi AP were combined together with apriori

information of the indoor environment to form a geometrical relationship between image

space to the inertial space from which the user’s distance and orientation with respect

to detected objects can be determined with high accuracy. At first two images captured

by the mobile phone’s front-facing camera are passed into a pre-trained YOLOV2 DNN

Object Detector which extracted coordinates of known households items in the image

space. Then orientation data from IMU was measured to determine a rough estimation

of the distance and orientation between the detected objects and the user using quater-

nion calculation. Using position estimation calculated from Wi-Fi CSI data the rough

estimation is refined further by solving a linear equation. In this paper, the authors

tested the system for both single users and multi-user scenarios in which 8 participant

volunteered. The mean accuracy of the system was 0.2 meters at 92-percentile for objects

within 5 meter of range. User’s were identified using integer numbers and assigned spe-

cific actions sequence to perform. It is to be noted that, how the eight users interacted

during data collection was not explained nor the speed of the system.

The MIPS proposed by Domingo et al. [27] demonstrated robust localization of

multiple users moving simultaneously in a complex environment using spatial information

obtained from two separate positioning system running concurrently with one another.

One is a Wi-Fi based positioning (WPS) and another is a vision-based indoor positioning
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system which uses depth map captured by multiple Xbox Kinetic V2 RGB-D cameras to

compute the “skeletal” position of all users within its field of view. The core idea is to

estimate position of a user at meter level using WPS and then refine that measurement

to centimeter level using finer position estimate obtained from RGB-D cameras. During

operation phase, RSSI values and their corresponding depth map are sent to the central

server which then first checks if the number of trajectories generated by the two sensing

modalities are equal to the number of users present at a particular time step. If equal

number of trajectories exists from the two modalities, the system computes a matrix

containing the euclidean distance between all possible pairs of WPS trajectories and

depth map trajectories. Then it finds the one-to-one unique pairing between the radio

information and skeletal position using the Balas Additive Algorithm, effectively joining

an user’s identity from WPS data to a skeletal coordinate from the RGB-D camera. This

system while thematically similar to our proposed system has many discrepancies. Firstly

the paper reported a maximum of 20 users taking 8 predefined paths but it not discuss

how the users moved about the environment. Secondly, this MIPS heavily depends on

server-side synchronization and 2s scanning window for WPS. This infers lower than

near-real time speed in actual application.

2.6 Challenges in Indoor Positioning Systems

In this section we briefly present the common challenges associated with Indoor

Positioning Systems. Note that, we will restrict the discussion only to challenges associ-

ated with RF-based Indoor Positioning, Vision based Indoor Positioning and Multimodal

Indoor Positioning Systems since an exhaustive review of all challenges associated beyond

the scope of this work.

2.6.1 Dependence on environment specific radio map. One of the major

shortcomings of Fingerprinting based RF-IPS is its dependence on environment spe-

cific Radio Map for predicting location of moving objects. Radio Map is a database

of RSSI signatures that uniquely characterizes certain locations on the testbed. This
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database is created during the offline data collection stage which is then used to train

the ML model for inference stage. Features derived from raw RSSI measurements such

as mean, mode, rolling average are used to create the unique signatures as mentioned

above. However, these features are dependent upon RSSI measurements whose efficacy

directly depends upon various factors such as number/position of RF-beacons, number

of incoming/outgoing users, change in static obstacles and system configurations such as

number of reference points, number and type of RF-beacons and so on. In real-world con-

ditions, number of users, their interactions and, position of static obstacles may change

in a random manner. Hence, the Radio Map needs to be constantly updated to account

for these changes. Performing this task manually is a labor and time intensive process

feasible for small scale application but for large scale application automation is required.

Whether manual or automatic process is used, the data collection scenario should to as

close to the real-world condition the system will work in. However, replicating all real-

world conditions is not a trivial task. Furthermore, within the same testbed changing

the orientation, position, height or number of RF-beacons drastically changes the signal

to location properties that requires creating a completely new Radio Map.

In addition to the above, updating Radio Map is also challenging due to the the

fact that different smart devices (smartphones, smart watches) records RSSI value differ-

ently at a known distance due usage of different chipsets [11,19] and their measurement

varies even more during movement. Thus, updating a Radio Map not only requires col-

lecting RSSI measurements over and over again but also requires to incorporate different

models of smart devices, all of which must then participate in collecting data in a manner

as they would be used during inference stage. Such knowledge of type and usage of smart

devices is impractical for real-world use.

Due to the above issues, a Radio Map created in one indoor testbed is specific

that environment and any MIPS utilizing RF-based fingerprinting techniques inherets

this limitation. Additionally, a previously created Radio Map is not easily usable in a
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new testbed since the signal properties and distribution of reference locations in latter

testbed seldomly matches the former.

2.6.2 Privacy and security. IPS needs some user-specific identifier for detec-

tion, localization and tracking. One of the most common identifier used is the device

identifier (such as Mac address) found in almost all smart devices. But device identifiers

can be captured secretly to compromise user’s privacy [13]. Zafari et al. [10] and Holcer

et al. [14] attributed this limitation to the design methodology in IPS which were primar-

ily concerned in improving accuracy and reducing cost but does not directly take into

account user’s privacy. Guaranteeing anonymization of device identifiers is important,

especially for providing personalized services but is technically challenging to accomplish.

Attempts have been made to secure users data by processing localization information di-

rectly on the user’s device. This method while improving privacy is not energy efficient

as the user’s device is then needed to do all calculations related to positioning on top of

measuring signals (RSSI, image) needed for localization. For energy constrained device

such as a smartphones, this approach is sub-optimal [17]. Another approach taken to

improve privacy is to use encrypted communication using traditional algorithms which in

theory improves privacy guarantee compared to lack of encryption, but in practice this

approach is also not energy efficient [14].

In addition to encryption, removing features from input signal is a viable op-

tion but comes with a usability trade-off. For instance, blurring out facial feature from

input images completely removes the capability of the system to distinguish an user

uniquely from a group. Hence, though CV-IPS can then track individuals with high

accuracy, without incorporating artificial markers unique to each individual. However,

this is problematic since use of artificial markers restricts the real-world applicability of

CV-IPS to only a handful of scenarios [20].

2.6.3 Cost. Cost to deploy an IPS directly dictates its real-world applicability.

Depending on the system architecture, costs are incurred from factors such as setting
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up network infrastructure, installation, software subscription, maintenance, computer

hardware and storage facilities. In some instances certain cost may be unavoidable. For

instance, Domingo et al. [27] covered an office room of 80 m2 with 20 RGB-D kinetic

cameras. This many 3D cameras require a powerful back-end server for processing all

data that increased overall cost. In contrast, Blanco et al. [16] covered a larger workspace

consisting of more than three rooms using a small number of overhead cameras fitted with

360◦ wide angle lens whose data were processed in near-real time speed with standard

desktop computer. Hence the latter design is much cheaper in comparison to the the

former but the system architecture proposed in [27] can distinguish multiple users whereas

the system in [16] cannot distinguish any users uniquely.

2.6.4 Scalability. Scalability refers to how IPS performs when more sensors,

environment, network infrastructure is added to the system. The challenge lies in is

creating a scalable system without incurring heavy financial and performance penalties.

For RF-based IPS, performance decreases as user’s mobile device moves further away

from the RF-beacons [11]. Consequently, more RF-nodes is needed to be placed on

the workspace which proportionally increases the complexity of the algorithm and data

collection requirement. Additionally, wireless signals degrades in quality in congested

area with a lot of people and radio devices, requiring update to radio map which for

large application is infeasible. For CV-IPS, scalability is a major challenge since the

the problem of tracking a group of users across multiple cameras is a NP-Hard problem

with no known optimum solution [45]. Additionally real-time CV-IPS requires more

expensive hardware and faster network infrastructure which adds to the complexity of

scaling CV-IPS.

2.6.5 Large annotated database for supervised DNN. A challenge uniquely

associated with CV-IPS using supervised DNN models is the lack of large annotated im-

age database needed in training stage. Creating this database is very time consuming due

to lengthy data collection process and manual annotation process that is commonly used
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Figure 5. Manual annotation with a common “Person” class

to create annotated data. To exemplify, if a image sequence of only five minutes consists

of 1000 images and if there are four users present throughout the whole 5 minutes, then

the total number of annotation that manually needs to be created is 4000 which roughly

takes 4 hours to complete (refer Figure 6). Automating the annotation process is a viable

option but requires complex techniques which becomes a limiting factor when multiple

indoor environment is considered.

To further complicate this problem, the training database needs to adequately

capture the diverse interaction between users and objects in the testbed. For instance,

if training data is collected only for people in walking in and out of an empty testbed

for a fixed lighting condition (i.e. lab with no natural light), the model will not perform

adequately for a test data where multiple chairs and tables are placed with users inter-

acting while sitting (i.e classrooms). Thus, the training data collected needs to be as

close to the actual scenario as possible which for real-world implementations is difficult
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Figure 6. Annotation at individual person level

to perform due to the large diversity of interactions possible between users and objects

in an indoor environment.

2.6.6 Challenges in MIPS. In section 2.5, it was established that inclusion

of non RF technologies such as Inertial Measurement and Vision can greatly improve the

accuracy of an Indoor Positioning System. However, the improved accuracy comes at

additional infrastructure cost, complexity, latency, energy efficiency and privacy related

cost. This is because the challenges/shortcomings of individual constituent technologies

translates to challenges with. Multi-modal Indoor Positioning Systems. The first of such

challenge is synchronizing heterogeneous datastreams that directly affects the usability,

accuracy and latency of the MIPS system. To illustrate, the RF-Vision based MIPS

proposed in [27], one can track multiple users in a privacy-friendly manner using position

estimations obtained from Wi-Fi-IPS and Infrared depth images based CV-IPS with

over 90% accuracy. However, due to the difference in measuring RSSI signal from Wi-Fi

access points by the mobile phones and speed at which the depth maps from the Kinetic

cameras are updated, the system requires more than 2 seconds to process 1 timestep.

This coarse estimation was then fine tuned with the fine position estimation from the
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depth map. Though the accuracy was high the latency of this system made incompatible

for real-time operation. In contrast, the MIPS proposed in [2] fused RSSI data from BLE

beacons with PDR from Inertial sensors directly on the smartphones to provide location

information to the users in context of the surrounding environment.This system had an

update rate of 0.14 seconds, offers better energy inefficiency since all processing takes

place on the smart device that drains batteries faster, has a larger localization error in

contrast to the solution proposed in [27] that makes it suitable only for large workspace

applications.

The second major challenge in MIPS lies with the complexity of algorithms in

fusing multimodal data. Algorithms such as Unscented Kalman Filter, Particle Filter,

Conditional Random Fields are required along with Machine Learning and Deep Learn-

ing algorithms to extract accurate location information from multimodal data. However

smart devices have limited computational capacities and fixed battery life which makes

them unsuitable for running complex algorithms. As a result most MIPS requires a

centralized server to aggregate and preprocess the multimodal data before before execut-

ing the complex positioning algorithms. Hence introduction of server computers raises

infrastructure cost. But running all calculation on a centralized server comes with the

additional requirement of of providing location information to each connected user in-

dividually for which a user-specific identifier is required. Ensuring error-free and low

latency server-user communication adds another hurdle to MIPS whose difficulty in-

creases since sending out location service data to multiple users who are also mobile is

a complex engineering challenge. On top of streaming data to the right user, protecting

their privacy and ensuring data security warrants the need for complex post-processing

algorithms which adds to overall the latency of the system.
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Chapter 3 Problem Statement

Let there be M users present on the testbed for the total duration of T . We

define i to represent each user such that i = 1, 2, 3.....M . The users are in full view of

the overhead camera and each user carries a mobile device that is able to record signals

from K accessible BLE beacons in the testbed. All the 2D positions can be defined with

respect to the image plane.

We define tp as a single timestep within T . The testbed is divided into Lgrid

cells labeled with an integer sequence lq such that lq = 0, 1, 2, ....., Lgrid−1. Each cell has a

unique 2D coordinate assigned to it and represented by (ylq , ylq). Let each ith user‘s smart

device create a randomized alphanumeric string dubbed pseudo id and denoted by Oi
tp .

We assume pseudo ids do not change until end of session i.e. Oi
tp = Oi

tp+1 = ..... = Oi
T

and, is a token that uniquely represents the ith user to the proposed system.

Figure 7. Block diagram of proposed MIPS

Now at timestep tp, input to the Bluetooth Low Indoor Positioning System (BLE-

IPS) is a signal matrix Rtp = {Ri}M×1
such that {Ri} = [[r10:t1 , r

2
t1:t2

, r3t2:tir ], O
i
tp , tp]. Each

Ri holds three RSSI vectors in the form [r10:t1 , r
2
t1:t2

, r3t2:tir ] collected over three epochs

t1, t2, t3 in a 1 second time window. Let the time at which the ith user’s smartphone

finished collecting three RSSI vectors be the recording time tir. For simplification, we

assume tir ≈ tp. Each RSSI vector is an ordered list in the form [rssi1, rssi2, ...., rssib]

where b = 1, 2, ....K and rssib denotes the raw RSSI measured for the bth beacon. Rtp is

passed into the BLE-IPS where a features from the 3 RSSI signal vectors are extracted

and passed through a Machine Learning model that predicts 1 cell among Lgrid cells
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for each user. The output from the model is a matrix where each row is in the form

{M i} = [liq, O
i
tp , tp]. Using a linear mapping function, cell labels liq are converted to their

2D coordinate mapping. Output from BLE-IPS is thus the matrix Btp = {Bi}M×1
where

{Bi} = [Oi
tp , (x

i
lq
, yilq), tp]. The output clearly shows BLE-IPS can uniquely distinguish

an user but cannot track them in continuous space.

Concurrent to BLE-IPS, a 2D RGB image Ftp is passed to the Computer Vision

Indoor Positioning System (CV-IPS). Here the image passes through a CNN Object

Detector model and a Multi Object Tracking model respectively. One pass through the

pipeline directly gives 2D position estimation for J detected objects indexed by j such

that j = 1, 2, ......J . Thus, output from CV-IPS is the matrix Vtp = {V j}M×1
where

{V j} = [P j
tp , (x

j
tp , y

j
tp), tp]. (xjtp , y

j
tp) is the instantaneous 2D position coordinate for the

jth detected object at timestep tp. P
j
tp represents a track id used by CV-IPS to represent

a “track” for this object over time. Unlike pseudo id, track ids are system generated and

may change over time for the same object. From matrix Vtp , it is evident that CV-IPS

can track objects on the continuous space but cannot uniquely distinguish them.

Matrices Btp and Vtp are inputs to the Unique Association and Tracking (UAT)

containing two sets of identity and spatial information from all M users at timestep

tp. The output from UAT is the system output Utp = {U j}M×1
such that {U i} =

[Ai
tp , (x

j
tp , y

j
tp), tp]. Here Ai

tp represents a pairing between Oi
tp and one of the track ids for

the ith user.

Our objective is to establish unique Ai
tp for all M users at timestep tp and,

hold this association until last timestep T . If Ai
tp is correct and unique, the proposed

Multimodal Indoor Positioning System (MIPS) uniquely distinguished each user using

the pseudo id from BLE-IPS and logical association, track them over continuous

space using spatial information from CV-IPS.
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Chapter 4 System Design

In this chapter we present the design goals of the proposed Multimodal Indoor

Positioning System followed by a brief description of the System Architecture and working

methodology of the proposed MIPS system. Chapter 5 will elaborate on the experimental

setup along with operational details of each subsystem with discussion to why certain

design choices were made.

4.1 Goals and Objectives

The proposed MIPS design aims to improve localization performance to track

multiple users using Computer Vision and Bluetooth anonymously. Following the per-

formance requirements discussed previously and privacy-preserving goals in introduced

in [65], the following design goals are set for the proposed MIPS

• Anonymity - In order to achieve anonymization of users, the overall system design

must prevent user identification. In order to achieve this requirement, we used an

anonymous device identifier associated with user’s smartphone that is pseudo and

session specific (i.e an anonymous identifier that changes with each session) and IoT

edge device running major calculations does not collect or store any personal data

(i.e mac address of the phone, phone number, facial features, body pose, gesture

from image data).

• High Accuracy Tracking and Low Localization Error - The second major

requirement for the proposed MIPS is to achieve ≥ 90% tracking accuracy and ≤

50cm localization error.

• Number of Concurrent Users - Our third major requirement is to demonstrate

that the proposed system can serve more than 4 users concurrently. In this research,

we aim to demonstrate service to 6 concurrent users participating in 5 different

mobility scenarios.
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• Latency - The fourth requirement is to demonstrate use of inexpensive IoT Edge

device, the proposed system can operate in real-time or near real-time speeds to

show potential for real-world application. We expect the system to have an latency

less than or equal to 100 milliseconds (i.e operate at or over 10Hz).

• Minimal User Interaction - Once the smartphone app is activated, the proposed

system should require minimal to no input from users in order to perform unique

association and tracking.

• Edge Computing - The proposed MIPS should demonstrate low latency to justify

deployment on a modern Edge device. This allows for robust privacy-preservation

since Edge Computing is decentralized by nature thereby it can provide localization

information as an “on-demand” service that reduces chances of storing historical

trace of the user. Furthermore, Edge devices supports M2M communication which

allows the proposed system to scale up larger deployment and work with heteroge-

neous smart devices.

• Generalizability - The system architecture shown in (refer Figure 7) should sup-

port other forms of RF-based Indoor Positioning System alongside CV-IPS to func-

tion in different indoor environments.

• Minimum Service Area and Cost - The service area for the proposed system

should be adequately large enough to distinguish,localize and track 6 concurrent

users. Moreover, the system should be able to use existing WLAN infrastructure

for communications and should require no additional devices to read BLE adver-

tisements from BLE-beacons. Finally, the proposed system should be able to run

completely in an Edge. Achieving these objectives will facilitate in overall low cost

of deployment.
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4.2 System Architecture

Figure 8 depicts the system architecture of the proposed MIPS system. Note

that, the figure depicts the system in its operational stage. In a later chapter we will

discuss the “data collection” stage that is needed to train the Machine Learning model

in BLE-IPS and Deep Neural Network Object Detector in CV-IPS.

The proposed system architecture is divided into three distinct “layers”. In the

“Physical Layer”, all users with their respective smartphones, Bluetooth Low Beacons

and the Edge device containing the overhead camera is present. Only users visible to

the camera unit (i.e present in camera’s field of view) are considered for localization. All

users carried Android devices, each of which is equipped with a custom Android app.

The Edge device is a custom Linux Single-Board-Computer (SBC) containing a ARM

CPU, an Nvidia GPU and a Raspberry Pi camera unit coupled with a wide-angle lens

pointing downwards (overhead camera).

In the “Communication Layer” data from all users’ smartphones is aggregated

and “published” to a pre-defined topic to a MQTT broker. In this layer, a 2D RGB

image captured by the overhead camera unit is passed to the Edge device via the CSI

bus. Additionally, during each timestep, the Edge device using the MQTT messaging

protocol “subscribes” to the pre-defined topic to acquire the Bluetooth data from users

smart devices. The proposed architecture allows for the Communication Layer to be

executed in a separate physical device or as a “software” layer in the Edge device itself.

We have implemented the latter.

The proposed MIPS executes unique association and tracking in the “Application

Layer” using three subsystems (refer Figure 7).The Bluetooth Low Indoor Positioning

System (BLE-IPS) is an Indoor Positioning System which utilizes the Fingerprinting

technique (a ML model) to predict the user’s location out of a collection of discrete “grid

points” on the observation area based on the RSSI data available at a particular time

42



Figure 8. System Architecture (Operational Stage)

instance. BLE-IPS distinguishes an user using the “pseudo-id” obtained from user’s mo-

bile device. After determining a discrete grid point, it is converted to the 2D coordinate

via the “2D Coordinate Mapping” model. This 2D coordinate is defined with respect

to the image coordinate system which can then be converted to the global coordinate

system using a scalar multiplier. Ideally BLE-IPS would be executed within the smart-

phone but due to implementation limitations, the BLE-IPS subsystem is executed on the

Edge device itself. Note that, the BLE-IPS module predicts location from RSSI data for

multiple users whose data is available at that time instance.
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Running in parallel to the BLE-IPS is the Computer Vision Indoor Positioning

System (CV-IPS) which consists of two modules a CNN Object Detector and a Multi

Object Tracker which processes the raw 2D image to extract tracklet ids and 2D coor-

dinates for each detected “objects”. Note that, unlike BLE-IPS, CV-IPS cannot dis-

tinguish users individually but can learn to recognize them as generic “objects” under

a class called “Person” and assign a tracking id to track their movement across image

frames. Moreover, the precision of localization in CV-IPS is in centimeter level whereas

the localization precision of BLE-IPS is in meter level.

The outputs from the BLE-IPS and CV-IPS subsystems are then fed into the

“Unique Association and Tracking Module” (UAT). The UAT module consists of three

group of algorithms viz. “One-to-One Matching”, “Propagate Assoication” and “Associ-

ation Recovery”. As shown in Figure 8, using the two sets of 2D position coordinate, the

UAT module first matches the user’s pseudo-id to the tracklet-id assigned to him/her by

the CV-IPS module and then ties the high precision 2D localization from the CV-IPS

module to achieve multi user unique association and tracking. This process occurs for

that number of users whose pseudo-id is available to the system at that time instance

and the process is repeated over and over until the last timestep in the system.

When an execution of UAT is completed, the output is a set of pseudo-ids with

2D localization from CV-IPS which are then passed back to the user over MQTT. As the

analysis is post hoc, output to users were not implemented.

4.3 Working Methodology of MIPS

We begin by presenting Figure 9 that elaborates on the “Application Layer” intro-

duced in Figure 8. The proposed system should correctly and uniquely match A track id

from CV-IPS to a pseudo-ids from BLE-IPS such that the user may be tracked on the

continuous space using the high resolution spatial information updated every cycle from

CV-IPS and, be uniquely distinguished using the unique pseudo-id without providing

44



any personal information to the system.

Figure 9. Working Principle of MIPS

At timestep 1, a valid 2D RGB image and RSSI data with pseudo id for the four

user be present (Figure 9(a) ). The image is sent to the CV-IPS subsystem that uses
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the pre-trained CNN Object Detection model to predict the “bounding box ”, regions

which has the highest probability of containing objects belonging to the class “People”.

This information is then passed onto a Multi Object Detection model which compares the

current box predictions to boxes available in known tracks decides either to update the 2D

location information for existing tracks or assign new tracks to detected “objects”. Each

track is denoted by a “track id” (sometime referred as tracklet, tracklet id in literature

[66]). Concurrent to CV-IPS, the BLE-IPS takes in the RSSI data, extracts a number of

“features” and sends the featured engineered RSSI data to Machine Learning model. The

output from the model is processed to return a 2D location and tied to each pseudo-id

as shown in Figure 9 (c).

The Unique Association and Tracking subsystem takes the output from BLE-IPS

and CV-IPS as input and performs two tasks viz. match new pseudo ids to track ids or

use last known pairings to update location estimation for one or more users at the current

timestep. As seen in Figure 9 (c), no pseudo ids were previously paired to tracks from

CV-IPS. In this condition, a MIPS matches pseudo ids to all available tracks using “One-

to-One Matching” state chooses between heuristic algorithm depending on the number of

pseudo id, track id pairs that needs matching. Once one-to-one matching is performed,

users’ pseudo ids to track ids are paired as shown in Figure 9 (d) (red bounding boxes)

for timestep 1. The numeric string such “T6 [1]” depicts which pseudo id is paired to

which track id at that timestep. The 2D coordinates (X, Y ) for each of the pseudo ids

are directly passed on from the tracks in CV-IPS system by logical association.

Now for the subsequent timestep T in which the four users were present in the

observation area, if CV-IPS can “maintain” the track id it had assigned to the four users

in the old timestep 1, then the pseudo id to track id association established in timestep 1

is valid in timestep T via logical association. Hence, the four users association is “prop-

agated” into the new timestep (Figure 9 (d), timestep T) and their track information is
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updated with the new 2D coordinate estimations from CV-IPS. The state is called “Prop-

agate Association”. Notice the values of (X, Y ) in Figure 9 (d). For the two timesteps,

the values are very close to one another. This shows that the four users have now been

tracked across time with very precise localization information by the MIPS and yet they

are distinguished uniquely using their phone generated pseudo id. In the subsequent

timesteps, if new users are introduced or old user leaves the scenario, the MIPS system

repeats the steps of association and propagation and, the cycle continues.
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Chapter 5 Experimental Setup and Methods

In this chapter, we first present the details related to the experimental setup fol-

lowed by brief discussion on composition and working methodology of the three major

subsystems that constitutes the proposed MIPS. Table 4 lists all the important parame-

ters/configurations used for the experiment and Figure 10 shows the physical hardware

used in the experiment.

5.1 Experimental Setup

Figure 10. Hardware used in Experiment

The first major design consideration for the experiment was to determine the

size of the experimental testbed. In Indoor Positioning System literature, the size of

the experiment area (testbed) varied widely depending on constituent technology and

application. For MIPS with a vision component, the size of testbed is limited by the

camera’s Field-of-View (FoV) and complexity associated with deploying multiple cameras

to cover a large workspace. Having multiple cameras increases computational requirement
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Figure 11. Top-view of the Experimental Area (40 grid configuration)

since data from all cameras needs to be synchronized either to an external server or

processed asynchronously in a distributed network. This adds to latency and complexity

of the overall system. Our proposed system included an an overhead camera unit coupled

to the Edge device. The height at which the camera unit is placed, the camera’s FoV and

resolution determined the size of the testbed. While choosing these three parameters, we

ensured that the size of the observation was sufficiently large to accommodate movement

of 6 concurrent users and RSSI data from all Bluetooth Beacons were accessible at any

point in the observation area.

Figure 11 shows a diagrammatic representation of the experimental area along

with the placement of the BLE beacons (blue circles) and demarcation of the observation

area (red rectangle). The area is 40.7 m2 divided into a 40-cell grid. 5 Estimote Bluetooth

Proximity BLE Beacons were placed at 5 location on the map, each of which were placed

roughly 2 meters off the ground. 6 Android smartphones were used, each of which was
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Figure 12. Overhead view of the experimental area

assigned to one user through out the experiment. The smartphones used were 4 LG

Nexus 5s, 1 LG Nexus 5X and 1 Samsung Galaxy S6. Note that, due to difference in

antenna design, orientation, gains, each generation of phones perceives RSSI signal value

differently for the same physical location. While most IPS works with data collected by

the same family of mobile devices, we opted to use multiple devices since this would more

closely resembles real-world scenarios where users would have smartphones from different

manufacturers.

The camera unit along with the Edge device was placed at the center of the

observation area 15 feet high from the ground-level as shown in Figure 13. Figure 12

shows the observation area as seen from the CV-IPS output at this height. The 2D

coordinate system is defined in terms of the image coordinate system whose origin lies at

the upper-left corner of the image and each point of the image is defined in terms of pixel

value. As one moves to the right, the X-axis value increases and as one moves towards

the bottom the Y-axis value increases. The blue stickers seen in Figure 12 marks the

center points of each grid cell which were used by the users to navigate the experimental
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Figure 13. Schematic diagram of overhead camera setup

area. Note that, for our case, the actual FoV of the camera unit is greater than the

physical limits of the testbed but this is not a norm but a by product of the combination

of lens and camera height.

Another important consideration for our experimental setup is the primary com-

putation unit. Note that our design goal requires the computation device to be cheaper

but have sufficient computation power to provide localization services to multiple users in

a privacy-friendly manner. We introduced in section 2.2.3 the “Edge” devices, which are

local machines capable of using IoT communication protocols to communicate and inter-

act with a wide variety of IoT devices for serving various indoor application needs. Recent

works such as [15, 30, 51] have shown that modern Edge devices are suitable for Indoor

Positioning Systems since they consumes less power (less than 30 Watts) are priced well

below $1000 mark but can provide robust indoor localization since they come equipped

with sufficiently powerful CPUS and GPUS which can run Deep Learning models.

The Edge device chosen for our experiment is the Nvidia Jetson Xavier NX AI

computing kit from Nvidia which comes equipped with an integrated 384-core NVIDIA
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Volta GPU with 48 Tensor Cores clocked at 1.1 Ghz, 6-core NVIDIA Carmel ARMv8.2

64-bit CPU running at 1.4 Ghz and 8GB 128-bit LPDDR4x.Furthermore, using a pro-

prietary library, this board can poll full 5M images from inexpensive Raspberry pi via

the CSI bus at 21FPS without slowing the CPU down thanks to built-in hardware accel-

eration and using full resolution allowed us to use the full 160 degree view. The device

consumes only 15 Watts and natively supports MQTT which is a crucial design con-

sideration since the entire communication pipeline in our proposed system is based on

MQTT. The builtin GPU with the 8GB 128-bit shared RAM is essential to process the

chosen CNN model at near-realtime speed without inducing large latency on the CPU.

For the BLE-IPS subsystem, the BLE beacons chosen were Estimote’s Proxim-

ity Beacon which are BLE 4.2 supported System-on-Chips (SoC) powered by an ARM

Cortex-M4 32-bit processor running at 64 Mhz with 512 kB Flash memory. These devices

are battery operated RF=tags which continuously sends out a “beacon”, a pre-formatted

data in Apple’s Open-Source advertizement protocol called “iBeacon”. An BLE beacon

configured in iBeacon periodically broadcasts a data packet within its operational area.

The protocol contains a 16byte Universally Unique Identifier (UUID) coupled with op-

tional 2 byte major and 2 byte minor values. When a advertisement packet is received

by a smartphone the app first parses the UUID and then the major and minor values

to identify the beacon. It then forms the RSSI value based on perceived strength of

the received advertisement signal and a pre-defined signal strength value at 1 meter dis-

tance. The RSSI value is lower when the smartphone is closer to the BLE beacon and

progressively increases as the smartphone moves away. Lower RSSI value indicates close

proximity and vice-versa.

Figure 14 shows the User-Interface of the smartphone app that installed inside

each user’s smartphone. It was written on Java and utilized an open-source Bluetooth

library to parse iBeacon data into Beacon ID and corresponding RSSI value.The beacon

IDs are designated on the top row of Figure 14 with the bottom row showing the RSSI
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Figure 14. Smartphone Application

value in dBM at a certain interval. The row below shows the status of connection of this

smartphone to overall communication network via MQTT. “CONNECTED” indicates

that the smartphone is connected to the MQTT broker at that time and is transferring

RSSI data at certain interval. Note that the localization output while available to the

Edge device and on the MQTT network was not broadcasted to the users via the app

in an effort to reduce complexity of implementation. An important point to note is

that the users had to only turn the app on and move about the observation area during

experimentation (data collection). No other activities were required to be performed by

the user to use this app. All data collection, formatting and subsequent transfer to the

Edge device was done autonomously. The app also showed a static message to inform

users to maintain social distancing as per IRB regulations set for this experiment.
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MQTT (Messaging Queuing Telemetry Transport Protocol) is the chosen commu-

nication protocol with which the Edge device and all smartphones maintain device-to-

device communications. Introduced in 1999, it is a publisher-subscriber protocol designed

to use very little bandwidth to exchange byte sized data between large number of inter-

connected devices [naik2014]. It is a connection-oriented communication method that

uses TCP/IP as transport protocol and TLS/SSL for security. As a result, MQTT can

be directly used with existing WLAN infrastructure.For our usecase, MQTT is most suit-

able since all the smartphones requires to send RSSI data chunks to the Edge device in

a 1 second intervals. To minimize complexity and cost by having additional hardware,

the MQTT broker was simulated directly inside the Edge device itself. Note that, the

Edge device itself is also a MQTT client subscribing to the “ANDROID/RSSI” topic on

which all Android devices are sending RSSI data along with pseudo-id associated with

those smartphones. Ideally, it the proposed system would be able to accommodate data

transfer from as many smart devices (i.e. users) as possible at at any given time but due

to technical limitations and implementation challenges, a variable timing mechanism had

to be implemented. More details on this timing mechanism is presented in Chapter 6.

5.2 BLE-IPS: Description

The BLE-IPS subsystem uses Bluetooth Low technology to localize users in one of

the 40 grid cells using the principles of Scene Analysis (a.k.a Fingerprinting) techniques

introduced in Section 2.4.2.

The first important parameter for the BLE-IPS is the choice of reference locations

(cells) that represents the position of the user based on the RSSI signals measured from all

accessible beacons. Usually deployed as a grid, the choice of number of cells and their size

is not straightforward since RF signal in indoor environment is affected by a multitude of

site-specific parameters that makes using the grid setup knowledge from one experiment

to another very difficult, often incompatible [yasin2016]. Moreover, cell density varied
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widely from experiment to experiment with each having performance unique to that

testbed. For example in [67] authors developed an iterative KNN model for a 28x21 m2

testbed were each cell was a square of size 0.6m x 0.6m and placed 1.2 meters apart.

Subedhi et al. [37] divided their testbed into square cells of side length 1.35m and each

was placed 2.7meters apart. Since no concrete information regarding the density and size

of cells was found for a testbed similar to ours, we opted to deploy the BLE-IPS for a

40-cell grid configuration as shown in Figure 11. In this configuration, each grid cell is

placed 1 meter apart and the cells are 0.5 m x 0.5 m.

The choice of BLE beacon and number of becons deployed has a direct effect on

the performance of the Machine Learning model. However in literature, the number of

beacon that needs to be deployed is often the outcome of the experiment itself. BLE

beacons broadcasts their advertisement signal at 10Hz nominally to conserve power.

This causes sharp drop in signal strength as one moves further away from the beacon

and the fading occurs non-linearly [26]. As a result, cells which are farther away from

the beacon have lower detection accuracy than cells which are at close proximity [67].

Another important beacon parameter to consider is the advertisement protocol. Apple’s

open-source iBeacon and Google’s Eddystone protocols are two of the most widely used

protocol with iBeacon being the most widely supported protocol by BLE-Beacon vendors.

Considering all the above, we opted to place four beacons at four corners with a fifth

beacon in middle. The Estimote Beacons used were configured to use iBeacon protocol

and the Android app used an open-source library to read and parse beacon id and form

RSSI value based on the strength of the advertisement packet received.

The Machine Learning model chosen was the Random Forest classifier. Apart

from Random Forest classifier, k-Nearest Neighbor, Support Vector Classifier, Logistic

Regression, Probabilistic Classifiers, Multilayer Perceptron have been used with BLE-IPS

with varying results depending upon the indoor environment, beacon placement, density

of users and data processing techniques used [36]. We opted to use Random Forest
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Classifier since its principle of training numerous Decision Trees for ensemble voting has

shown to have ¡= 2 meter localization error for ¿90% time in multiple studies [3,4]. For a

detailed study on various Machine Learning models used in RF-IPS, we refer the reader

to [36].

An important step in machine learning projects is the choice of “features” which

are used by the ML model to characterize each classes in the response variable. In our

case, the response variable is the cells that constitutes the grid and each cell needs to

be uniquely characterized by the “feature” variables derived from the raw RSSI values

obtained from the beacons placed on the map. Note that, choosing the right features

helps in mitigating RF-specific issues such as multipath effect, signal attenuation, NLOS

conditions and improves the model’s capability to discriminate between different cells

better. Removing outliers has also been shown to be very effective in stabilizing RSSI

data in [68].

In RF-IPS, rolling mean is one of the most commonly used feature in RF-based

IPS whose utility was explored in-depth in [26]. Variance and Standard Deviation was

shown to be effective in extracting region specific information from k-RSSI samples for

a BLE-IPS application in [xin-yu2015]. Other common features include id of the nearest

beacon [41], weighted moving average and adjusted RSSI [33].

In order to create RSSI features, sufficient RSSI sample needs to be collected

at a particular timestep. In this regard, the choice of scanning window is crucial since

slow sampling (≥ 5s) may yield stable RSSI data provided the user stands still in each

timestep which does not real-world walking scenario emulated in our experiment. Setting

the scanning window to a smaller value raises complexity in synchronizing RSSI data from

multiple users and too frequent sampling reduces effectiveness of multipath mitigation

strategies such as rolling mean. This occurs since the recording device will capture

fluctuating signals without giving enough time for the RSSI signal to stabilize [26].

Considering all the factors above, we opted to create the rolling mean, standard
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Figure 15. Cell 1 Raw RSSI data distribution from Scenario 1

deviation and skewness features for each of the 5 beacons and, had set the scanning

window to 1 second. The skewness feature was selected after analyzing the Bluetooth

data for individual location which often showed showed skewness either to left or right

of the mean depending upon the location and beacon. A sample is shown in Figure 15.

5.3 BLE-IPS: Method

The BLE-IPS subsystem determines the location of the user in two steps. First, it

generates a total of 15 features by taking 9 raw RSSI samples for each of the 5 beacon from

current timestep and previous two timestep. Outlier removal is used to drop samples that

did not fall within 2 standard deviations for the samples in the window. The system then

forms a input matrix were each row corresponds to a pseudo-id and the feature engineered

RSSI vector associated to it. This matrix is then passed to the Random Forest Classifier.

As Random Forest is a deterministic classifier, it is guaranteed to choose 1 out of 40

cells as long as there is a valid featured engineered RSSI vector. Furthermore, it is also

guaranteed that in a particular timestep that the BLE-IPS will predict that many cells

that equals to the number of entries in the input matrix to BLE-IPS. This is possible

since the quality of data transmission between the smartphones and Edge device can be
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tightly controlled using the builtin QoS feature of MQTT [69].

Figure 16. BLE-IPS Method

Output from the Random Forest Classifier is a matrix that contains the pseudo id

and predicted cell label for each entry in the matrix. A linear mapping function converts

the cell labels to a 2D coordinate based on a apriori mapping between the centroids of

the grid cell and the location label. The process is shown in Figure 16. The final output

from BLE-IPS is the Btp matrix in which each row contains a pseudo id and centroid of

the grid cell predicted by the Random Forest classifier. It is important to note that, the

pseudo ids themselves cannot be part of the feature engineered data since they session

specific randomly generate by Android app during inference stage. If pseudo-ids were

predetermined in the training stage, this would then become an unique identifier exclusive

to that individual which would circumvent the privacy-preserving attribute of the pseudo
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ids.

5.4 CV-IPS: Description

One of the major challenges in CV-IPS is the choice of camera view which directly

impacts the performance of a CNN Object Detector. Majority of CNN Object Detectors

were developed for standard front-facing camera images with the primary assumption that

people appears to be in upright and their overall appearance remains relatively unchanged

over the image plane [70]. However, omnidirectional images popular in overhead CV-IPS

literature has two drawbacks that it makes using omnidirectional images sub optimal for

use with a CNN Object Detector.

Firstly, the convolutions layers in a CNN detector assumes the visual appearance

of objects do not have spatial variance, only their apparent size changes. However, as seen

from Figure 17 (b), the omnidirectional overhead images of people have severe geometric

distortion which dramatically changes the appearance of an individual as the traverse

from the center of the image towards the periphery and vice-versa. This nullifies the

spatial-invarince assumption and causes sub optimal detection [16] . Secondly, creating

training samples from omnidirectional images is more time consuming since the bounding

boxes needs to be radially aligned in addition to be manually drawn around people to

represent ground-truth regions.

To account for these limitation, we have chosen to use a 160°wide angle lens for the

overhead camera. While not covering as much area as omnidirectional camera, this image

view does not suffer from server geometric distortion as shown in Figures 17(c,d). As a

result, we were able to use the YOLOv3-Tiny directly on the overhead images without

requiring any perspective transformation nor required to develop techniques to radially

align any ground-truth bounding box thereby circumventing saving time and reducing

complexity [70].
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Figure 17. Object Detection and Tracking in CV-IPS

Another major consideration when choosing a CNN Object Detector for Edge ap-

plication is its size and computational requirements. This choice is dictated by how many

CNN layers, weight parameters, number of stages detection occurs and post-processing

algorithm the model employees for object detection. To illustrate, YOLOv3, the full ver-

sion of YOLOv3-tiny has 136 layers and over 20M parameters. It can reaches 30FPS on

MS COCO 2017 dataset only when running on a GTX Titan, a server-class graphics card

whereas Jetson NX whose graphics card has only 384 CUDA cores struggles to maintain

10FPS with the same model.

Realizing this trade-off, a number of research have emerged aimed at modifying
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YOLOv3 base model to fit in to Edge devices . Mao et al. [71] greatly reduced the

parameter count of YoloV3 by using depth separable convolutions and pointwise group

convolutions layers instead of traditional convolution layers and, reported better accuracy

than YOLOv3-tiny, the standard small size model of the base YOLOv3 model. Huang

et al. [72] developed YOLO-LITE a 7 layer, 4.8 million parameters YOLOV2 model

that is 3.8x faster than SSD MobileNetV1 and is capable of running at 21FPS on non-

GPU computers. While very promising for our application, its detection accuracy is

less than YOLOv3-tiny since YOLOv3-tiny has 36 layers which can capture much more

features of the environment and people than YOLO-LITE. Another notable variation of

YOLOv3-tiny is the Tinier-YOLO [73] which implemented “Fire Module”, a 3x3 and 1x1

CNN combination layers that replaces max pooling layers and achieves high parameter

compression (i.e. greatly reduces the number of parameters). Moreover Tinier-YOLO

utilizes “Dense Connection” to improve feature detection. This CNN model has a total

of 96 layers but with 3M less parameters than that of YOLOV3-tiny.

Based on the above, we have opted to use YOLOV3-tiny as the base Object De-

tection model for the CV-IPS subsystem. YOLOv3-tiny has 36 layers in total containing

8.66 million trainable parameters. YOLOv3-tiny predicts bounding box location and

class labels twice in two densely connected layers (sometimes referred to as YOLO layer)

in order to detect large and medium sized objects respectively and concat the outputs

at the end. In Chapter 7, we will also used the Tinier-YOLO model to demonstrate the

effect of choice of CNN model on the performance of MIPS system. Readers interested on

the full working principle of YOLOv3-tiny are referred to [74] and [73] for Tinier-YOLO.

After choosing the Object Detection model, the choice of Multi Object Tracking al-

gorithm was determined primarily from choosing a model from the “Track-by-Detection”

family. Track-by-Detection models are most suitable for real-time application since they
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only use information up to the current timestep to track objects (Online models). How-

ever, their performance are heavily dependent upon the performance of the Object De-

tection model [66].

The Simple Online and Realtime Tracking (SORT) [59] model is chosen as the

Multi Object Tracking (MOT) model even though possessing relatively low tracking

accuracy in comparison to recent state-of-the art online trackers such as GOTURN [75],

DeepSORT [44], RetinaTrack [76], Learning to Track [57]. Although lacking in tracking

accuracy, its simple architectures allows real-time operation on an Edge device. This is

because most state-of-the art MOT models have separate neural networks and complex

heuristic algorithms to counter short-term, long-term occlusions, missed detections, group

detections, recover tracking id which requires considerable amount of processing powers

to operate.

To illustrate, DeepSORT which shows 45% reduction in ID-Switching employees a

separate CNN Detection Layer for appearance detection (SORT only uses the bounding

box geometry) which adds an additional 2.8M parameters to be computed by the system.

As a result, DeepSORT requires approximately 30ms by itself to perform one complete

cycle on a GTX 1050 GPU which is a desktop class GPU having twice CUDA core count

than Jetson Xavier NX. The SORT algorithm in comparison does not require any addi-

tional training since it has no separate DNN model for appearance detection nor requires

a lot of computation power since the data association algorithm used is the Hungarian

Data Assignment algorithm which is highly optimized for Python environment. Another

key advantage is its use of Linear Kalman Filter for predicting motion of moving objects

with information from current frame and the previous few frames which helps in keeping

latency down but at the cost of robustness against occlusion, missed detection which on

basis of scenario causes severe id-switching problem [59].

62



5.5 CV-IPS: Method

The CV-IPS subsystem performs the tasks of object detection and tracking in

three steps as shown in Figure 18. For every timestep a 640 x 480 image is available

which is passed into the YOLOv3-tiny bounding box regressor. The image is converted

to a 416 x 416 letterbox size image and then passed through the network. The network

predicts one bounding box for each user present in the image using a series of convolu-

tion, maxpooling, downsampling and upsampling operations followed by prediction using

anchor box transformation and, deletion of spurious bounding boxes in post-processing

using thresholding by object confidence and non-maximum suppression.

In Figure 18, each of the bounding boxes marked with alphabets a,b,c,d contains

represents detection for the 4 individuals. Each box contains 4 parameters, the centroid

of the box (bx, by), box width and box height (bw, bh). In step 2, the information from

current detection is passed to the SORT multi object tracker. For the very first detection,

SORT assigns a random integer number starting from 1 for each of the detected object.

In this situation, step 2 is not executed. During later timesteps, when a fresh batch

of detection comes in, SORT forms a similarity matrix by calculating the Intersection-

over-Union measure (also known as Jaccard‘s Index) by comparing the degree of overlap

between the current bounding boxes to the last known bounding boxes assigned to a

track using Equation 3.

IoU =
|A ∩B|
|A ∪B|

(3)

The similarity matrix is then solved for unique one-to-one matching between detections

and tracks using the Hungarian Data Assignment model [77]. However, though assign-

ment by Hungarian model is guaranteed to be optimal it not always guaranteed to be

correct. Hence, a minimum IoU threshold value of 0.35 was imposed, below which as-

signment were rejected. The assignment matrix determines the final unique one-to-one

detection to tracking id pairing, using which SORT updates the (X, Y ) coordinates for
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Figure 18. CV-IPS working methodology

each “track” by extracting the box centroid. Note that, the SORT is not tracking the

individuals using contextual information from the image but using only bounding box

parameters obtained from the Object Detector. Furthermore, to the CV-IPS, the identity
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of the individual is only the “track ID” assigned by the SORT algorithm. This track id is

mutable and subject to the target object’s continuing detection by the Object Detector

over time. If the detector misses detection of the target object, SORT deletes the last

“track” assigned to that object. Thus, SORT reassigns a new track to the target object

when a new bounding box estimation for the missing object is found. The output from

CV-IPS is the Vtp matrix that contains the assigned track id and the current (X, Y )

coordinates at the current timestep.

5.6 Unique Association and Tracking: Description

In section 4.3 we introduced the Unique Association and Tracking subsystem that

performed the critical tasks of unique user association and tracking using three system

states. With reference to the notations and variables introduced in Chapter 3, let at

timestep tp, input to the proposed system be Btp and Vtp the outputs from BLE-IPS

and CV-IPS respectively at this time instance. We recall from Chapter 3, Ai
tp represents

unique and exclusive association between (Oi
tp , P

i
tp) pairs.

If both Btp and Vtp matrices have non-zero data, the system checks if there is any

unmatched pseudo ids and track ids by comparing with Utp−1. If the numbers new pseudo

ids to track ids are equal or if the number of track ids exceeds the number of pseudo

ids, the system then executes “One-to-One Matching” state using the Nearest Neighbour

Greedy Search heuristic algorithm. Nearest Neighbour Greedy Search matching requires

both spatial and temporal information from Btp and Vtp to perform unique association.

This algorithm iteratively cycles through each pseudo-id and checks against all available

tracklet-id to determine which pair is the most similar by computing a “similarity mea-

sure”. The similarity measure can be computed using the well-known distance metrics

such as Euclidean, Manhattan, Cosine distance since the spatial information available

is a 2D vector. For the proposed system, we used a combination of Euclidean distance
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and Cosine Similarity measures due to limitations of Euclidean distance for in comput-

ing same relative distance between two users occupying two adjacent grid cells. With

addition of Cosine distance whose angle assumes a value between 0 - 0.05◦ when the 2D

centroid of the bounding box is less than 70 units away from the centroid of the grid cell.

The Greedy search algorithm accepts that association whose euclidean distance and an-

gle from cosine similarity measure falls below 70 units and 0.02◦ respectively. However,

from experimentation we observed these threshold values cannot be static throughout

the whole scenario and is subject to dynamic ranging on a scenario-by-scenario basis.

The Hungarian algorithm commonly used in associating detections to tracklets in

MOT [66] was a viable alternative to the Nearest Neighbour Greedy Search algorithm.

However, for our experiment we did not notice any significant difference in terms of

accuracy or speed when the two were compared. It is to be noted that Nearest Neighbour

Greedy Search time requirement increases exponentially whereas Hungarian Algorithm

increases in O(N4) [45].

If the number of unmatched (Oi
tp , P

i
tp) pairs is only 1, “Temporal Matching” heuris-

tic algorithm is used to execute “One-to-One Matching” state. This is a naive logical

algorithm built with the assumption that only 1 user requires unique matching and the

pseudo id Oi
tp available was obtained from this individual‘s cellphone. Hence, association

occurs directly using tp value as basis of similarity.

Now in the next timestep, it Btp and Vtp have valid data the system can choose

to perform association again or propagate last known association. This is accomplished

by checking if number of unpaired ids is 0 since when all users are uniquely associated

or number of detection falls below the number of pseudo ids present in Btp , there is not

sufficient information to do One-to-One unique association.

Now, if Btp matrix had no valid data, the UAT module utilizes current Vtp and

Utp−1 to compare if there is a change in the collection of track ids with respect to previous

timestep. If no changes occurred, the system then executes “Propagate Association”
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Figure 19. Flow Diagram of Unique Association and Tracking Subsystem

state, a naive heuristic which capitalizes on the fact that, for two congruent timesteps,

if YOLOv3-tiny detected the target objects, SORT propagated their assigned track ids

to current timestep. Hence by logical association, P i
tp = P i

tp−1 thus Ai
tp = Ai

tp−1 i.e

association from previous timestep is valid for current timestep.

However, if the collection of track ids are different between two congruent timesteps

67



tpandtp−1, UAT module attempts to recover lost association using “Association Recov-

ery” state. This state uses a modified Nearest Neighbour Greedy Search Algorithm that

first identifies pseudo ids which lost association in current timestep by comparing with

Ai
tp−1 in Utp−1 and then searches through the collection of track ids in V i

tp matrix to find

those P i
tp ids whose spatial information is most similar to the spatial information of lost

Oi
tp ids. If new association is valid, the pseudo ids missing lacking association is assigned

to the newfound track ids and thus their track resumes. Since the data used is already

available in spatial form and in memory, Association Recovery executes in real-time speed

but in Chapter 7, we will demonstrate that the utility of association recovery is more

scenario specific and is subject to some of the drawbacks of greedy matching strategy.

5.7 Unique Association and Tracking: Method

The three states of UAT subsystem “One-to-One Matching”, “Propagate Associa-

tion” and “Association Recovery” states are executed by four heuristic algorithms namely

Nearest Neighbour Greedy Search, Temporal Matching, Propagate Association and As-

sociation Recovery. In the following section we briefly discuss the working principle of

these four algorithms with examples from Scenario 3.

The Nearest Neighbour Greedy Search matching algorithm works in three steps

as shown Figure 20. First, a similarity matrix Ctp is formed in which each cell is formed

by a (Oi
tp , P

j
tp) pair and for simplicity, we consider that i = j. Let ci,j represent each

cell in Ctp that contains two values, the Euclidean distance di,j and angle from Cosine

similarity measure θi,j. Let qi represent the 2D (X, Y ) coordinate for the pseudo id in

the ith row and pj represents the 2D (X, Y ) coordinate for the track id in the jth column.

Then for each ci,j, dij and θij are computed using Equations 4 and 5 as shown below

di,j =

√√√√ n∑
i,j=1

(qi − pi)2 (4)
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Figure 20. Nearest Neighbour Greedy Search Matching

θi,j = arccos(

∑n
i,j=1(qipj)√∑n

i=1 q
2
i

√∑n
j=1 p

2
j

) (5)
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In second step, the greedy matching algorithm cycles through all the cells in Ctp

and forms an assignment matrix Atp where each cell ai,j represents an unique one-to-one

association between the pseudo id and track id pair at that cell. ai,j can assume a binary

value and a value of 1 indicates valid assignment. To assess acceptable assignment, let the

threshold Euclidean distance and angle be represented by dthres and θthres respectively.

Then a pseudo id, track id pair pairing is considered unique and exclusive if and only if

ai,j =


1 if di,j ≤ dthres & θi,j ≤ θthres

0 otherwise

(6)

Equation 6 is used to perform this operation iteratively until all pseudo ids have

been paired with one track id such that all pairs are exclusive and non repeatable. Once all

assignment is made, MIPS updates the matrix Utp in which each pseudo id’s association

with the track id is recorded and position estimate for the Oi
tp pseudo id is updated with

the 2D position estimate from Cv-IPS. Note that, in example shown in Figure 20, user

T3 was not associated with any track at this timestep since his smartphone did not set

a valid RSSI data at that time.

Now in the next timestep, tp = 21 : 42 : 00, user T3‘s smartphone sends data and

since he is the only person who has no association and there is 1 unmatched track id,

“Temporal Association” heuristic algorithm is invoked which directly assigns the pseudo

id “T3” to the track id 4 and updates . Moreover comparing to tp = 21 : 41 : 59 the

track ids at timestep tp = 21 : 42 : 00 are identical which entails their previous pseudo

id, track id association are also valid for this timestep. As a result, the system also

invokes “Propagate Association” state, executed by an heuristic algorithm of the same

name that simply updates the 2D position estimation for these pseudo ids and updates

Utp−1. Figure 21 demonstrates the two heuristic algorithms.

The Association Recovery heuristic algorithm works using the Nearest Neighbor

Greedy Search Matching algorithm and is invoked only when there is no valid Bluetooth
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Figure 21. Temporal and Propagate Association

data at the timestep in which the system is trying to recover association. A sample is

shown in Figure 22.

The algorithm forms a pseudo matrix similar to Btp matrix by taking the spatial

information from the last timestep for the timestep in which one or more users lost

association. In Figure 22, user “T4” user lost association at tp = 131, then the pseudo

matrix is formed from U130 matrix. At timestep tp = 134, CV-IPS discovers a “new”
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object and assigns track id 8 to keep track of its trajectory. But track 8 is actually

tracking user “T4” as a new object from CV-IPS perspective. Now utilizing the pseudo

matrix and Vtp , MIPS invokes association recovery which using Nearest Neighbor Greedy

Search matching matches missing pseudo id “T4” to the new track id ”8”.

Figure 22. Association Recovery

Depending on the distance traversed by the user before he/she is rediscovered by

YOLOv3-tiny, this algorithm may be successful in reassigning a new track id to the pseudo

id of the user. Experimentally we found that, Association Recovery works correctly when

CV-IPS re detects the missing users within 1 meter of the position at which they lost

unique association.
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Table 4. Parameters/Configurations of the proposed system

Name Value

Number of Users Variable (2 - 6)

Raw image resolution 5 mega pixels

Downsampled image size 640 by 480 pixels

Image capture rate 21 fps

Object Detection Model YOLOv3-tiny

MOT model Simple Online and Realtime Tracking
(SORT)

Input to CNN 416 by 416 pixels

Minimum class confidence for Object Detec-
tion

0.65

NonMax suppression threshold 0.45

Image processor GPU

Number of missing frames before tracklet
deletion

1

Minimum detection before tracklet assign-
ment

3

Bounding box overlap threshold in SORT 0.35

Number of Beacons 5

Beacon Tx Power -10 dB

Beacon Range 30 feet

Beacon update rate 10 Hz

ML Model Random Forest Classifier (RF)

Number of features 14

RF estimators 500

RF minimum sample size 2

RF minimum sample split 2

Communication technology WLAN/Wi-Fi

Messaging Protocol MQTT

Number of Smartphones 6

Smartphone OS Android 7.0 and above

Programming languages Python, C++, Java

MQTT libraries Mosquitto, Paho-MQTT

DNN Python library Pytorch 1.7 and Torchvision 0.8
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Chapter 6 Data Collection,Metrics and Experiment Procedure

In this chapter we first present a brief overview of various publicly available Blue-

tooth and Computer Vision datasets to discuss why none of these datasets were directly

usable for training the Random Forest Classifier in BLE-IPS and CNN Object Detector

in CV-IPS for the proposed system. We provide a brief description of a new multi modal

dataset that was created to specifically to synchronize vision data with RSSI data for

evaluating the proposed system. Finally, we conclude this chapter with a discussion on

the data acquisition system, methods and processing techniques used within the three

major subsystems that comprises the proposed Multimodal Indoor Positioning System.

6.1 Brief overview of existing BLE Datasets

As previously discussed, the nature of collected RSSI data is specific to an indoor

positioning application that prevents model trained on RSSI data from one experiment

to work correctly in another different indoor environment. Each of these databases were

created from ground-up and were build for very different indoor settings. Moreover,

the publicly available BLE RSSI databases did not consider multimodal data nor very

close proximity positioning for multiple users, the two key requirements for our proposed

system. The following is a brief overview for some of the well-known BLE RSSI datasets

used in BLE-IPS research.

One of the first well-known publicly available BLE RSSI dataset is the UJIIn-

doorLoc data first published by Torres-Sospedra et al. [78] in 2014. Consisting of data

collected from three adjacent multi floor buildings at the Jamue I University campus, this

dataset has 20,000 discrete RSSI samples collected from 933 reference locations spread

across three buildings. 20 participants carrying 25 mobile devices collected data from

520 Bluetooth beacons. Thus, each RSSI vector consists of 520 RSSI measures separated

by beacon ids but it is to be mentioned that no mobile device at any point on the actual

space got access to all 520 beacons. Undetected beacons were given a default value of
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+100 dBm. On average each grid cell detected about 27 discrete beacons. The primary

purpose of this dataset was building and room level localization which is not enough for

our proposed system. Furthermore, no camera data is available with which our proposed

MIPS model can be tested.

Another well-known public BLE RSSI dataset is presented in [41] where the pri-

mary goal was to provide a freely available BLE RSS database for testing indoor position-

ing methods across several devices, beacon parameter conditions in a library environment

and an office enviornment with a dense deployment of beacons in both testbeds. Android

phones were used to collect data with 1 second scanning window. On average 24 Blue-

tooth beacons configured to iBeacon protocol were placed across various locations in the

two testbeds. Average coverage area by the deployed beacon were 163.54 m2 which is

much larger than the coverage area of our testbed. As a result, the RSSI data character-

izing the grid cells in [41] is incompatible for our application. Moreover, the maximum

number of surveyors were 3 and during data collection they stood still in each grid cells

whereas the users only stand still for first 5 second in our case and then randomly walk

around on each grid cell for the remainder for the experiment.

Baronti et al. [79] introduced a BLE RSSI dataset in 2018 for the purpose of

testing ML models that is poised to test positioning, tracking and social interaction

among subjects spread across eight rooms and a connecting corridor space. 277 grid

cells spaced 0.6 meters apart where defined for a total coverage area of 237.38 m2. The

authors did not use any commercial beacons but made their own using Raspberry Pi

SBCs fitted with two Bluetooth module. One module was configured to be a listener

whilst the other acted as a BLE beacon broadcasting an advertisement in 10 Hz. Data

were collected for 6 scenarios with three trials per scenario. Users mobile phone recorded

data in a format which contained timestamp, transmitter ID, receiver ID and the RSSI

value. The complete dataset has 2,820,00 samples. Similar to the issue with other two

datasets discussed above, this dataset is also not usable as it does not have any image
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data, grid cells were defined for a coverage area much larger than ours and only 3 users

at highest participated in collecting data where as we need 6.

6.2 Brief overview of Existing Vision Dataset

The Yolov3-tiny model in CV-IPS shares the same disadvantage as any Deep

Learning model, the requirement of a large annotated training dataset. Moreover, the

training dataset need to adequately capture the dynamics of people walking on the obser-

vation area in order for the model to extract descriptive feature sufficient to reach greater

than 90% detection accuracy required by the UAT module. However, majority of vision

dataset used with YOLO family of object detectors are created for outdoor pedestrian

detection with front-facing camera images. YOLO model pre-trained on a front-facing

camera requires additional data from overhead camera images specific to a particular

testbed in order to be usable for that particular environment. But only a handful of

overhead vision dataset is publicly available majority of which is created with a 360 de-

gree overhead images. We experimented with images from these datasets and found that

the YOLO model trained on overhead images available in these datasets, performed very

poorly during inference stage since the images did not capture the environment dynamics

unique to our testbed.

This conformed to the findings from Blanco et al. [16] who put forward the hy-

pothesis that, the convolution layers in CNN Object Detectors were suitable for images

where people appearance were stable and did not undergo large radial distortion. In

addition to the problem of 360 view images, none of the publicly available dataset con-

sidered multi modal application or dense multi user interaction that is prevalent in our

experiment. As a result they do not have RSSI to grid cell mapping nor user-specific

information such as a pseudo-id associated with them. While grid cells may be artifi-

cially created on the images, RSSI data that would characterize these grid cells cannot be

created artificially due to spatio-temporal variance of RSSI coupled with device, beacon
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configuration, number of user etc. dependencies that makes RSSI data specific to each

unique indoor environments [21]. The following is a brief overview of overhead publicly

available datasets used in IPS literature.

Demiröz et al. [80] published one of the earliest overhead vision dataset called

BOMNI-DB in which images from Scenario 3 is relevant to overhead IPS application.

Annotated images from 36 small video clips containing 5 people performing 5 actions

(Sitting, Walking, Standing, Handshaking, Interested in Object) is available with bound-

ing box drawn around each visible person along with a reference tracklet-id. Each video

clip is approximately 1.5 minutes long with 750 image frames with 640 x 480 resolution.

The lens used is a full 360 degree fish-eye lens. While the dataset contains sufficiently

large collection of images, only three people interacted at most at any given point in

time. Additionally, the dataset was designed specifically for MOT algorithms and thus

did not consider multi modal application.

Another well-known overhead camera database is the PIROPO database intro-

duced by authors in [16]. Consisting of data collected in two rooms, the first room

contains three overhead cameras and the second contains one. Similar to BOMNI-DB,

the camera lens used is a full 360 degree fish-eye lens. The recording speed was 10Hz and

number of participants is 4. The image resolution was 800 x 600 pixels. This dataset

contains images in various challenging situation such as variable illumination, multiple

person walking at the same time, reflection of individuals on wall and screens and so

on. The images in second room provides an additional challenge of very cluttered lab

workspace environment. At the time of writing this report, PIROPO is the largest over-

head image dataset with 100,000 annotated image frames. However, all annotation are

point-based which cannot be directly used in bounding-box regression algorithms such

as YOLO. Moreover, the maximum number of people interacting was 4 and this type of

interaction was the least amount in the overall dataset.

The HDA+ dataset is another vision based data where data from 13 cameras was
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collected for providing a robust dataset for solving people re-identification problem as

they move between heterogeneous indoor environments covered by a network of cameras

having non-overlapping view [81]. Of the 13 cameras, only one camera has overhead view.

For this camera there, 9819 annotated images captured at 640 x 480 pixel resolution at

5Hz with a 140 degree wide-angle lens. A total of 9 individuals were present in the video

clips for the overhead camera. Each annotated image contains the location and size of

the bounding box, an unique id for a person visible, frame number, name of camera

and status of occlusion. While the image size and density of people is suitable for our

experiment, this dataset does not have any RSSI information associated with the 9 users

since its primary objective was to test algorithm which would keep track of individuals

with an initialized id as they move across different rooms.

6.3 Data Collection for Experiment

From the discussion presented in Chapter 5, Bluetooth and Vision Indoor Posi-

tioning System have two widely different update rates. The Edge device using Nvidia’s

“nvarguscamerasrc” proprietary library acquires 21 images per second on average but the

open-source Bluetooth library, and Estimote’s maximum advertisement rate of 100ms did

not allow the smartphones to collect RSSI data from all accessible beacons. Furthermore,

the three generation of phones used, each have different computation capabilities which

meant that different mobile phones would create RSSI vectors in different time intervals

even if they were synchronized to start from the same time moment. This problem is

further exacerbated from the observation that during motion, the smartphones did not

capture advertisement from all beacons equally in the same time interval. These limi-

tations created the challenge of deciding from which end would the MQTT request be

initiated for synchronizing the data streams. We observed that, if the MQTT request

were invoked for each and every image captured, the emulated brokers greatly slowed

down the Edge device due to the limitation of the Python library used and if the MQTT
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request were initiated from the smartphone end than data synchronization took place

at widely different time intervals which meant image frames were captured at infrequent

rates which lost contextual information necessary for unique association and tracking.

Figure 23. Data Synchronization Timeline

Taking all these practical limitation in mind and also the recommended RSSI data

measurement window of 1 second, the data acquisition system was designed to collect

1 raw image every 238ms. Once a raw 2D RGB image was captured, a MQTT request

to receive new RSSI data from all the connected smartphones was executed which took

50ms on average to complete.

A single timestep (the smallest system time interval) begins as soon as new

multimodal data is collected. Figure 23 depicts the system timeline. We observed that,

most of the timesteps, new RSSI data was not received from the smartphones. This

occurred since updated RSSI data every 1 second whereas new image data was captured

4 times every second. This observation lead us to design the “unique association” (i.e.

one-to-one association) as an “opportunistic” system whilst the “tracking” component

was designed as a continuous system. Note from Figure 23 that, all system timestep is

guaranteed to have an image data. The data for the experiment was collected from 5
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different multi user walking scenarios divided into two groups. The first group “Fixed”

contains data for Scenarios 1 and 3 in which the number of users in the testbed is fixed.

The second group “Variable” contains data from Scenarios 2,4,5 in which the number of

users in the testbed varies with time. The “Fixed” group scenario is designed to test

how the proposed system behaves in dense user interactions and the “Variable” group is

designed to test how the system behaves when the density of users varies over time in order

to ascertain whether the proposed system can scale up to dynamic change in number of

users and automatically handle initiation and deletion of one-to-one associations during

ingress and egress of individuals from the testbed without requiring manual input from

the user.

In order to minimize the probability of collecting fewer training samples than

necessary for both the ML and CNN models, Scenarios 1 -3 were repeated 4 times and

Scenarios 4,5 were repeated 2 times. Each repetition varied between 3.5 minutes to 5

minutes depending on fatigue of the participants and random entry and exit taken by

them. All indoor conditions were kept fixed (i.e. overhead lights, arrangement of chairs,

tables) and no user were allowed to swap their assigned Android phones. Within each

repetitions, minor variations such as switching users entry points, variable time lengths for

standing still in starting points etc. were introduced. Additionally, users were instructed

to hold their phone in a manner most natural to them.

Each repetition were marked with an alphanumeric sequence consisting of 4 ele-

ments in which the first two values represents the scenario and the remaining two rep-

resents the repetition instance. For example, repetition 2 in Scenario 1 is designated as

“s1a2”. In total 8 entry and exist points were set close to grid cells 1, 7, 24, 32, 34, 36,

37, 39 (refer Figure 11) through which users ingressed and egressed out of the testbed.

Each repetition has three distinct data files. Firstly, a CSV file is created which

records the timestep in which an image was captured where the images are aliased with a

“frame id” attribute, an integer number that represents the temporal order of a particular
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frame in an image sequence. Secondly, raw RSSI samples captured by each user’s mobile

phone is recorded in a separate CSV file aliased by the pseudo-id assigned to that mobile

phone. Finally, a CSV file containing RSSI features and aliased by the same pseudo-id

is created. A sample is shown in Figure 24.

For evaluating the MIPS system, 5 repetitions representing each of the 5 scenarios

were separated out while the remaining data constituted the “training” dataset. The

training dataset has 9967 annotated images and approximately 3277 feature engineered

RSSI vectors with ground-truth cell labels for training whilst the “testing” dataset has

5050 annotated images with 2065 feature engineered RSSI vectors with ground-truth

cell labels for testing the CNN Object Detector and ML model respectively. Note that,

the MIPS was not directly tested on the “testing” dataset but was tested on individual

scenario data after both the ML and CNN model were trained. This is required since

MIPS needs to consider the temporal ordering of image and RSSI data. The temporal

ordering of image data is true for the CV-IPS but the requirement of temporal ordered

data is not strictly necessary for BLE-IPS’s ML model since timestep was not a input

feature. A brief description of each of the 5 scenarios is presented in Table 5.

Table 5. Summary of Data Collection Scenario

Scenario ID Description

s1a1 6 people enters from 6 locations. Each person halts in their starting position
for 2 – 5 seconds. No one leaves

s2b2 5 people enters from one side and the 6th enters from opposite end. The 6th
person enters as soon as the first 5 has started to move. After 3 minutes, 3
users leave. After some time, one user returns.

s3a1 4 people enters from 4 different locations. Each person halts in their starting
position for 2 – 5 seconds. No one leaves

s4a2 4 people present in 4 corners. They stand on their spot for 3 – 5 seconds.
After 3 minutes, 2 new users enters through two different points. After 1
minute, two of the original 4 users leaves the area.

s5a2 2 people present in two corners. They stand on their spot for 3 – 5 seconds.
After 1 minute, 4 new user enters the observation area. After 2 minutes, 4
of the 6 users chosen at random, leaves the observation area

Note that, the assumption that user’s RSSI data is only valid when he/she is
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Figure 24. Sample Data
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present in the field was taken into consideration for the individual who left in a previous

timestep and returned in the current timestep. This was done since there is a time

lag for the Android app to register new RSSI data when power cycled. Furthermore,

in some cases, users had turned on the app before physically entering the testbed which

introduced spurious data. In post-processing these RSSI deleted. Additionally, due to the

COVID 19 pandemic, limitations on user mobility, dwelling time and interactions were

set by Institutional Review Board (IRB). All 6 participants were fully vaccinated and

during movement they maintained a minimum of 3 feet distance fro other participants.

No participants were allowed to come in physical contact with one another. Finally, no

participants had to use their personal smartphones, install the data collection app in

their own phones or undergo complex training session. The scenario were at maximum

5 minutes in length.

6.4 Evaluation Metrics

A number of metrics were defined to evaluate the proposed system and its sub

components. Note that, all errors in the continuous space (2D plane) are calculated as

Euclidean distance. The error value is computed first as a relative pixel-to-pixel distance

which is then multiplied by a factor of 1.14 to convert to relative distance in centimeter.

The multiplication factor is unique to the FoV of the camera and the the height at which

the camera unit was placed.

For ease of explanation, let timestep be denoted as tp and the last timestep in

the image sequence be N t. Furthermore, let the number of pseudo ids be denoted as P

and the number of users present be denoted as M such that P = M . Definitions and

mathematical formulations of the 12 chosen metrics are presented below

6.4.1 BLE-IPS object localization accuracy (OLA). This is the ratio of

correct cell predictions to total predictions for all users in a scenario. This metric is cal-

culated using Equation 7 after constructing the confusion matrix for the whole scenario.

Note that, temporal ordering of RSSI data is not strictly necessary since time is not a
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feature used by the ML model and the cell predictions would be same regardless of order

in which RSSI data is fed into the system. OLA is denoted as percentage.

OLA =

∑
DiagonalElements∑

AllElements
(7)

6.4.2 BLE-IPS latency. Average time taken to run BLE-IPS subsystem for a

scenario. Expressed in milliseconds.

6.4.3 CV-IPS object localization error (OLE). The CV-IPS is the measure

of the spatial and temporal overlap between the ground-truth tracks to predicted tracks

for all detected objects in a scenario. A track is defined as the collection of 2D positions

arranged in temporal order that represents the path taken by an object from a initial

time until timestep tp. This metric quantitatively measures the performance of the MOT

model in CV-IPS. Let NM
(tp)

as the number of detected objects that were uniquely paired

to a track at timestep tp. Additionally, let disto(tp) be Euclidean distance between location

estimation computed by CV-IPS for the oth mapped object to its ground-truth position.

OLE for CV-IPS is calculated using Equation 10 and expressed as a percentage.

OLE =

∑Nt

tp=1

∑NM
(tp)

o=1 disto(tp)∑N(t)

tp=1N
M
(tp)

(8)

6.4.4 CV-IPS object detection accuracy (ODA). CV-IPS is the accuracy

of the CNN Object Detection model in CV-IPS to classify detected objects as the “Per-

son” class in a scenario. This metric is a quantitative measure of the CNN Object

Detector.

Let NG
(tp)

be the number of objects present on the testbed at timestep tp. For

a well-trained CNN model, the number of detections would always be equal to NG
(tp)

but in certain cases more or less bounding boxes are predicted. Let the number of extra

bounding boxes predicted be defined as false positives denoted by fd(tp) and the number

of “missing” detections be defined as missed detections denoted by md(tp). ODA for

CV-IPS is then calculated using Equation 9 and is expressed as a percentage.
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ODA = 1−
∑Nt

tp=1md(tp) +
∑Nt

tp=1 fd(tp)∑Nt

tp=1N
G
(tp)

(9)

6.4.5 ID-SWITCH. Number of instances in which CV-IPS reassigned a track

ids in a scenario. Let it be denoted as IDS(tp) for timestep tp. Expressed as an integer

number, ID-SWITCH is higher for a model whose detection accuracy is lower. ID-

SWITCH also occurs when SORT looses track of two more objects in short-term, long-

term cluttered scenes.

6.4.6 CV-IPS object tracking accuracy (OTA). This is the measure of

CV-IPS’s ability to persistently track all objects in an image sequence. Together with

ID-SWITCH, OTA of CV-IPS is a quantitative measure of how well the CV-IPS main-

tains active tracking of users as generic “Person” object over time. Lower ID-SWITCH

and higher OTA allows MIPS to perform unique association less frequently and propa-

gate association more. OTA for CV-IPS is calculated using Equation 10 and expressed

as a percentage.

OTA = 1−
∑Nt

tp=1md(tp) +
∑Nt

tp=1 fd(tp) +
∑Nt

tp=1 IDS(tp)∑Nt

tp=1N
G
(tp)

(10)

6.4.7 CV-IPS latency. Defined as the average time taken by CV-IPS sub-

system to detect and track movement of objects of a target class across chronologically

ordered images in a scenario. Expressed in milliseconds (ms).

6.4.8 MIPS object localization error (OLE). Let Oi
tp denote the pseudo id

generated by the ith user with which MIPS tracks this individual. We define distitp as the

position error between the position estimate obtained after association to the ground-

truth location for the Oi
tp user. Let N i be the last timestep in which the ith user had a

valid association. Note that N i may be less than or equal to Nt.

Then OLE for MIPS is the average localization error in the continuous space for

users uniquely associated with their pseudo ids in the scenario. This metric is calculated
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using Equation 11 and expressed as a relative distance in centimeters. MIPS OLE con-

veys the information of how well the system localized an user after association on the

continuous space and can also be calculated at user-level.

OLE =

∑P
i=1(

∑Ni

tp=1 dist
i
tp

N i )

P
(11)

6.4.9 MIPS object tracking accuracy (OTA). Let ea(tp) be defined as the

Established Association, number of pseudo-ids that are newly associated or persis-

tently tracked from a previous timestep to the current timestep tp. Then let fa(tp)

represent False Positive Association and ma(tp) represent Missing Association.

Additionally we impose the condition that ea(tp) + fa(tp) + ma(tp) = P(tp) where P(tp) is

total number of users physically present on the testbed at timestep tp.

Then OTA for MIPS is defined as the ratio of total correct associations to sum-

mation of established, false and missing association for all users in a scenario. MIPS

OTA is calculated using Equation 12 and expressed as percentage. OTA for MIPS is a

quantitative measures of how well the proposed system can hold unique identification of

users over time.

OTA =

∑N i

tp=1 ea(tp)∑N i

tp=1 ea(tp) +
∑N i

tp=1 fa(tp) +
∑N i

tp=1ma(tp)
(12)

6.4.10 MIPS association latency (AL). Defined as the average time taken

to perform one-to-one matching between pseudo ids and track ids for all users in a

scenario. Denoted in milliseconds.

6.4.11 MIPS system latency (SL). Defined as the average time taken to

execute one complete cycle of the proposed system. System latency is measured in

milliseconds and we only consider the time it takes to process the multimodal data once

it becomes available but not the latency involved in acquiring the multimodal data.
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6.5 Experiment Procedure

The following are the list of assumptions and constraints imposed for this exper-

iment

1. Bluetooth data comes only when people comes into the scenario and opens the app.

2. Waiting 2-5 seconds after initial entry is sufficient to stabilize RSSI data for correct

one-to-one associations.

3. Latency to transfer RSSI data over Wi-Fi is negligible.

4. The collected multimodal data is sufficiently large enough to allow the DNN model

in CV-IPS and ML model in BLE-IPS to reach ¿90

Prior to experimentation, YOLOv3-tiny model was trained with the 9967 anno-

tated traning image set. According to [52], determining the dimensions of anchor boxes

prior to training is essential for achieving high detection accuracy. This was done using

K-means clustering from the training data as shown in Figure 25. Apart from achor

box determination, other optimization techniques such as multi-scale training, image

transformation, larger batch size were also employed.

Figure 25. Determining anchor box dimensions
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While training the YOLOv3-tiny was relatively straightforward, training Random

Forest classifier with the 3277 proved very challenging owing to the fact that, not all cells

were equally visited by the users Figure 26.

Figure 26. RSSI sample distribution based on cell location

A large portion of the samples were biased towards cell grids (i.e 7,39) which

indicated a walking bias by the users not foreseen during data collection. As a result,

with this training dataset, it was not possible train Random Forest classifier to use all 40

cell grids. Through trial and error, a 4-cell grid configuration was found which showed

≥ 90% detection accuracy for all 5 scenarios. The final grid configuration is shown in

Figure 27.

With the two models trained we proceeded to test MIPS for all 5 scenarios using

the procedure shown in Figure 29. For each timestep, the number of correct, missed and

false association along with latencies for each of the three subsystems is recorded in one

csv file as shown in Figure 28. Here, “ble tp”, “cv tp”, “al tp” and “sl tp” denotes the

latencies for BLE-IPS, CV-IPS, UAT and System Latency respectively.

The anonymous user id is used to create one CSV file for each user that stores the

2D coordinate of their movement based on the association established to their respective
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Figure 27. 4-cell grid configuration used in experiment

Figure 28. Example of output CSV files

id in each timestep (Figure 29 (b) ). In addition to these CSV files, the input image is

processed to visualize the UAT output and saved for each timestep. Note that, MIPS

does not have sufficient information to check the correctness of the established association

during run time and, as such cannot fill in the “fa tp” column. The output images

are used to manually correct the associations in Figure experiment˙csv(a). Once these

corrections are made, all metrics are computed and the experiment ends.
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Figure 29. Experimental Procedure

90



Chapter 7 Result and Discussion

Table 6. Results: OTA for CV-IPS and MIPS

Scenario ID CV-IPS (%) MIPS (%)
s1a1 97.9 93.9
s2b2 97.4 76.9
s3a1 97.9 95.0
s4a2 98.0 95.1
s5a2 98.1 79.6

Table 7. Results: OLE for CV-IPS and MIPS

Scenario ID CV-IPS (cm) MIPS (cm)
s1a1 30.1 48.3
s2b2 28.9 167.3
s3a1 26.5 33.7
s4a2 27.1 43.6
s5a2 26.6 150.8

Tables 6 and 7 shows the OTA and OLE results for CV-IPS and MIPS respectively.

BLE-IPS OLA and OLE are not shown here since BLE-IPS does not track in continuous

space and all 40 cells were not usable. One can observe that OLE and OTA have an

inverse relationship with linear distribution for the CV-IPS it‘s OLE reaching 23.2 cm

on average for the entire experiment. This corroborates the capability of a vision based

tracking system to localize moving objects with high resolution provided it‘s tracking

accuracy is greater than 90%. The high OTA also supports our assumption that a CNN

model works efficiently with an 160 degree overhead image in localizing multiple users

since the SORT algorithm is dependent upon how well YOLOv3-tiny differentiates people

from other object in the image sequence. The average ODA for the entire experiment is

93.2%.

In contrast to CV-IPS, MIPS OLE vs OTA relationship shows an inverse rela-

tionship with high degree of non linearity as depicted in Figure 30. Two important

observations can made namely MIPS performance is scenario-specific and OTA for MIPS
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Figure 30. MIPS OLE vs OTA

Figure 31. Comparison of OLE between CV-IPS and MIPS

needs to be greater than 90% to reach a localization resolution comparable to CV-IPS.

We also observed that beyond 93% OTA, OLE did not improve significantly.

Figure 31 shows comparison of OLE between CV-IPS and MIPS for all 5 scenarios.

From the figure, we observe that MIPS performed better in the “fixed” scenario group

than the “variable” group. Additionally, the scenarios where MIPS OTA fell below 80%,
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Figure 32. MIPS and CV-IPS track for one individual

OLE error rose above 150cm. The cause of wide variation in OTA and OLE for MIPS

can be explained by one crucial fact, that the performance of MIPS is entirely dependent

upon longevity of correct one-to-one associations at user-level.

As shown in Figure 32, for an individual‘s MIPS track, there are two sources of

association errors namely number of frames with false associations and number of frames

with missing associations. OLE error is highest when no association is established and

varies in degree for false association. The figure clearly demonstrates that MIPS OLE

is additive in nature. This is caused by the fact that MIPS cannot discontinue a

track when its association is lost since the pseudo id used to represent an user is alive

until end of session. In contrast, CV-IPS can discontinue and start a new track for the

same user after an event of ID-SWITCH (Figure 32 light blue and deep blue circles).

Once reestablished, CV-IPS counts the associations from that point in time as correct

which is not possible in MIPS. After a loss of association, MIPS reestablishes tracking

once a One-to-One Matching is successfully performed. Furthermore, by virtue of logical

association, an association whether right or wrong is carried forward in time. Thus,
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Figure 33. OLA for BLE-IPS in 5 scenarios

whether missing or false association occurs, OLE at individual level accrues over time.

This observation underscores two requirements for MIPS to perform well viz. correctly

associating an users as soon as they enter and performing correct One-to-One matching

as soon as valid multimodal data is available for one or more user(s) missing association.

Figure 32 also brings to light two relationships between OTA and number of users in

MIPS. The severity of OTA error directly dependent upon how many users had correct

association at a particular timestep. If the number users is lower, then penalty for wrong

or missing association is lot higher in comparison to scenario where number of users are

more. Secondly, in scenarios with even number of people, false positive errors will occurs

between a pair of users.

From the discussion presented in Section 5.6, MIPS can perform unique associa-

tions but cannot verify the authenticity of association in run time. This limitation occurs

due to the fact that UAT has only access to the numeric outputs from BLE-IPS and CV-

IPS, not to the multimodal data itself. Furthermore, the BLE-IPS can only predict the 4

corner cells with average 93% accuracy for the experiment as shown in Figure 33. Thus,

the BLE-IPS will always predict 1 out of the four chosen cells, regardless whether a
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person was physically present on any of the four corner cells.

The lack of verifying one-to-one associations and limited cell detections from BLE-

IPS gave rise to two major limitations of UAT module. First, the Greedy matching is

correct if and only if the spatial predictions from BLE-IPS and CV-IPS is true aprior

to matching which has the highest possibility if the user is positioned in one of the four

corner cells. Secondly, False association, once done is carried forward in time using the

“Propagate Association” as long as the the erroneous pairing survives.

These observations implies that MIPS has higher probability of performing well

in those scenarios where users entered through the four corner cells only. This is clearly

observed in Figure 31 where the top performing scenarios (s1a1, s3a1, s4a2) had all had

users entered through the 4 corner cells only.

Figure 34. Example frames from Scenario 2

Scenarios where users entered through one side of the map (s2b2 and s5a2), MIPS
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could not establish association and, made false association very early into the scenario

that in turn would raise OLE error for affected users significantly. Consider two users

“T3” and ”T1” from Scenario 2 as shown in Figure 34. Pseudo id assigned to these users

are marked in white. At timestep tp = 29 the 2 users did not get correct association. As

time progressed to tp = 134 user “T3” was falsely associated with id “T1” since user “T3”

was most closest to the cell 33 and both user had valid RSSI data at this time. User “T3”

wrong association was not broken until very late into the scenario. Note that,even though

actual “T1” user does not have any association, due to propagation, the path taken by

actual “T3” would be counted towards user “T1” and, user “T3” would be incurring OLE

error for missing association. At timestep tp = 289 via Temporal Matching actual user

“T1” is assigned id “T3” since there were one unmatched pseudo id and one unmatched

track id. Thus, Temporal matching can occur anytime and can make mistake due to its

simple logical association rule.

Table 8. Results: User level OLE for Scenarios 2 and 4, all values in cm

Pseudo id OLE (Scenario 2) OLE (Scenario 4)
T6 58.8 35.2
T5 131.5 37.9
T4 130.9 13.9
T3 408.8 60.8
T2 22.5 42.1
T1 250.9 71.7

Table 8 shows the OLE error for all 6 users in Scenario 2 and compares it with

Scenario 4. As expected users “T3” and ”T1” have very large errors in Scenario 2 due to

them having incorrect association through most of the scenario. In comparison, scenarios

where users were correctly associated from very early into the scenario, their OLE error

can reach sub 20cm OLE, even lower than CV-IPS.

Apart from the longevity of correct association, MIPS performance is also im-

pacted by the threshold parameters in Equation 6. The two threshold parameters dthres

and θthres can be tuned to either extend or constrict the region close to 4 cell grids that

96



would be considered for evaluating association.

Figure 35. Effect of threshold parameters

In experiments we observed that similarity measures dij and θij assumed values

close to 60 and 0.005 respectively when an user requiring association was standing≤ 10cm

from one of the 4 corner cells. However, we noticed that, setting parameters dthres and

θthres to 60 and 0.005 respectively caused missing associations in the initial minute of

Scenarios 4 and 5. In these scenarios, users after entering the testbed stood at cells

adjacent to the 4 corner cells. Hence, for Scenarios 4 and 5, parameters dthres and θthres

were set to values 100 and 0.1 respectively. This extended the effective area of association

to a 1 meter circle from the corner grid cells. However, after 1 minute, the parameters

were dialed down to smaller values to minimize false associations. Figure 35 demonstrates

this adjustment for the first four seconds in Scenario 4 (s4a2).

Table 9 shows the latencies of all three subsystems for the experiment and Figure

36 shows the system latency graph for the first 100 timestep of Scenario 1.

As evident from the table, running the YOLOv3-tiny model in the Jetson NX‘s
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Table 9. Results: Latency, all values in milliseconds

Scenario id BLE-IPS CV-IPS MIPS (AL) MIPS (SL)
s1a1 58.0 31.8 0.02 91.6
s2a2 54.4 29.7 0.18 83.9
s3a1 48.0 28.9 0.009 76.9
s4a2 53.9 28.7 0.0085 83.6
s5a2 52.8 29.0 0.12 83.7

Figure 36. System Latency

power efficient GPU and choosing SORT as the MOT model enabled CV-IPS to localize

multiple objects at near real-time speed (i.e. 33Hz). However, as shown in Figure 36 there

are certain timesteps in which system latencies were upwards of 150ms. These are the

epochs in which new One-to-One association were made. The majority of this delay came

from the Random Forest Classifier whose implementation is currently CPU exclusive and

computationally expensive. Thus, the proposed system opts to propagates last known

associations in absence of valid Bluetooth data. This design choice has contributed to

the overall low system latency but at expense of verifying correctness of association in

every timestep.

Figure 37 shows the break down of average latencies of the heuristic algorithms

present in UAT subsystem. It is clearly evident that, all three algorithms possess real-time

performance with “Propagate Association” (and by logical reasoning Temporal Associa-

tion) being the fastest.

Figure 38 shows the effect of user density to system latency for the proposed
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Figure 37. Latency comparison of Heuristic Algorithms in UAT

Figure 38. System Latency vs User Density

system. In the collected data, there were no standalone two user scenarios. Hence, the

first 250 timesteps of Scenarios 1, 3, and 5 representing 6,4 and 2 user scenario respectively

were selected to analyze this relationship. From the figure, between 6 vs 4 user scenario,

system latency showed the expected inverse relationship. However, between 4 vs 2 user

scenario, the result is inconclusive since the difference in time is very small. Figure 39

shows the effect of recovering lost association using the Association Recovery state. In

Section 5.6, we stated the assumption that, if CV-IPS can re-detect an individual for

whom it lost detection within 1 meter of their last known location, Association Recovery
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can successful re-establish one-to-one association for that individual. We observed this

hypothesis held true only for a number of cases. As a result, Association Recovery

affected each of the five scenarios differently.

Figure 39. MIPS OTA with/without Association Recovery

To illustrate, Figure 40 shows an example where recovering association had posi-

tive impact in Scenario 3. In this case, users “T6” and “T4” lost association in timestep

tp = 811. At timestep tp = 815 with no Association Recovery, MIPS attempts to per-

form One-to-One greedy matching but failed due to BLE-IPS predicting cell 33 for both

the user. Due to the dynamic motion, a valid association did not occur until timestep

tp = 962. In contrast, with Association Recovery, both users recovered their association

in timestep tp = 815. As a result, MIPS held onto their Association for rest of the sce-

nario which significantly lowered OLE for the two users. When no Association Recovery

was used, OLE for users T6 and T4 were 159.9cm and 136.4cm respectively whilst with

Association Recovery their OLE came down to 55.1cm and 49.8cm respectively. Thus,

recovering association as quickly as possible demonstrated noticeable performance impact

both at the system and the user-level.
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Figure 40. Example of Association Recovery

However, in Scenario 1, 3, 5 Association Recovery had detrimental effect since the

algorithm reestablished erroneous association from previous timestep. This caused by

the fact that, the Greedy Matching heuristic used to perform association cannot verify

correctness of association just like Nearest Neighbor Greedy Search matching. As a result

when Association Recovery is wrong, False Positive association continues over time which

increases OLE and reduces OTA as depicted in Figure 32. In our experiment, Association

Recovery had an overall negative effect on performance and marginal improved System

Latency.
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Table 10. Results: MIPS Performance using YOLOv3-tinier

Scenario ID OTA (%) OLE (cm) AL (ms) SL (ms)
s1a1 78.9 129.2 0.2 100.9
s2b2 75.2 137.5 0.097 94.4
s3a1 84.5 58.3 0.01 88.3
s4a2 94.8 33.1 0.015 95.3
s5a2 79.7 139.2 0.1 92.5

Figure 41. ID-SWITCH vs CNN Model

Figure 42. Latency vs CNN model for Scenario 1

The choice of CNN model in CV-IPS also showed a significant effect on the per-

formance of MIPS. For ease of explanation, Tinier-YOLO introduced in Section 5.4 will

be referred to as YOLOv3-tinier from hereon. Table 10 shows MIPS performance using
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YOLOv3-tinier for the experiment. This model was trained with the same dataset as

that of YOLOV3-tiny and all training hyperparameters were kept same. During exper-

iment, inclusion of Association Recovery and threshold parameters association was also

kept same as that of YOLOv3-tiny on scenario basis. We observed that OTA for some

scenario using YOLOv3-tinier was better than YOLOV3-tiny but on average OTA it is

less. This may be attributed to the higher number of ID-SWITCH shown in Figure 41

which was higher for all 5 scenarios in comparison to YOLOv3-tiny. Though YOLOv3-

tinier had more layers, it‘s parameter count is significantly less than YOLOV3-tiny which

also reduced the model’s capacity to create descriptive features necessary for detecting

people. In addition to OTA, choice of CNN model plays a crucial role in CV-IPS la-

tency. From Table 10, we observe that YOLOv3-tinier is on average 10ms slower than

YOLOV3-tinier. This is primarily caused by the additional time it took the GPU to

process the 96 layers of YOLOV3-tinier which in comparison is 2.6 times deeper than

YOLOV3-tiny. Figure 42 illustrates this observation for Scenario 1 but the same was true

for the other 4 scenarios. Our findings thus far gives support to the need for judiciously

choosing CNN model with strong consideration to the IoT platform in which the MIPS

is deployed.

We conclude this chapter by listing the key limitations of the proposed system

1. Proposed MIPS cannot assess correctness of association during run time. As a

result, False Association once done keeps on propagating forward in time.

2. Failure to establish association early on causes prolonged missing association which

greatly increases OLE.

3. With only 4 cells, MIPS can only establish association at certain regions of the map

using One-to-One Matching.

4. The Euclidean and Cosine similarity thresholds requires dynamic assignment and

is subject to scenario-by-scenario optimization.
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5. During data collection, smartphones did not update RSSI data every second. This

was caused by limitation of Edge device in emulating MQTT broker along with

limitation of application of Android app. As a result significant temporal gap

appeared between congruent RSSI vectors in many cases which caused many false

associations. Furthermore, assumption that RSSI data stabilizes 2-5 seconds after

entering the field is no guaranteed to be sufficient.

6. MIPS inherits all the drawbacks of BLE-IPS and CV-IPS. For instance, MIPS

needs recollect RSSI data and train the deterministic model for every new indoor

environment it is deployed to.
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Chapter 8 Conclusions and Future Work

8.1 Conclusions

In this thesis, we introduce a novel Multimodal Indoor Positioning System (MIPS)

for anonymized multi-user identification and tracking of in indoor environment.We track

the users device (i.e. smartphone) using an anonymous identifier. The system has two

independent indoor positioning systems namely Bluetooth Low Indoor Positioning Sys-

tem (BLE-IPS) and Computer-Vision Indoor Positioning System (CV-IPS). The ingested

multimodal data (RSSI measurements + 2D RGB images) provide object identifiers,

spatio-temporal trajectories of users from both the IPS units, and finally these trajecto-

ries are matches against each other. The system is evaluated on four evaluation metrics

namely Object Tracking Accuracy (OTA), Object Localization Error (OLE), Association

Latency (AL) and System Latency (SL).

To the best of our knowledge, the proposed MIPS is the first of its kind to use

multimodal data (BLE + Image) to anonymously track multiple users. Our experiments

to track six subjects reveal OTA ≥ 90% and OLE ≤ 50cm for various scenarios. The

average system latency was 70ms (14Hz) and the average latency to perform association

was 0.05ms (0.17MHz). These system performance demonstrates potential MIPS with

inexpensive Single-Board-Computers (SBC) for scaling up to large-scale indoor applica-

tions.

The UAT subsystem in the proposed MIPS only processed numeric data thereby

making the system independent of the multimodal data itself. This feature allows dif-

ferent RF and Vision based positioning systems to be used without modification to

architecture. The novel multimodal dataset provided data for 5 multi-user scenarios to

evaluate performance of BLE-IPS, CV-IPS and the MIPS respectively. Additionally,

during development of BLE-IPS, a novel RSSI feature rolling skewness was added that

improve the IPS performance.

We observe that the implementation of proposed MIPS is highly biased towards
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certain scenarios for two reasons. Firstly, due to uneven collection of RSSI samples per

reference cells, only 4 cells were usable by BLE-IPS. Secondly due to the dependency on

the longevity of correct one-to-one associations, MIPS required to detect, identify and

track new users as soon as they entered the testbed. As a result MIPS OTA and OLE

showed high variance across scenarios along with OLE varying in between the users in a

scenario.

Our results and analysis indicated that the proposed MIPS has strong potential

for real-world tracking of people with anonymization in an indoor environment provided

its tracking accuracy exceeds 90% and users are uniquely and correctly associated

as soon as they enter the workspace.

8.2 Future Work

There are a number of potential research directions one can take from this research.

Some potential research ideas are listed below:

1. Current design of proposed MIPS is unable to determine the correctness of asso-

ciation with 100% accuracy during run time due to the nature of the multimodal

data and how Nearest Neighbor Greedy Search pairs pseudo ids to track ids. Using

GPS-based localization and tracking in indoor environments conducive to GPS sig-

nals or using a known tracking system with high accuracy such as Active-Bat [82],

RADAR [83], a third set of identifier and spatial information may be obtained for

the users walking on the testbed. This information would then act as ground-truth

to assess correctness of association and tracked path during run time. Such a study

would not only yield a viable solution to this limitation but also shed light to the

privacy vs latency, tracking accuracy, cost, trade-offs for MIPS constituting three

or more independent positioning system.

2. Another promising direction this research can take is solving the lack of uniform

RSSI data collected per cell that severely impacted the performance of MIPS by
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diminishing the capabilities of BLE-IPS. Using small robots retrofitted with smart-

phones is a viable approach to solving this problem as robots can alleviate the need

for people to continuously walk over each grid cells at uniform frequency. Col-

lecting RSSI samples with robots may lead to studies involving optimization and

path-planning using the proposed MIPS.

3. One of the major drawbacks of MIPS is the dependence of creating new Radio Maps

for each new indoor environment. This problem may be solved by simulating multi

user walking condition for different environment. This is a viable approach since in

IPS literature a large number of studies showed promising results in creating syn-

thetic RSSI data by considering the propagation model of radio signals in different

indoor environments before comparing results from real-world experiments. Such

a stimulative system will greatly benefit the scalability of the proposed system by

reducing the dependence of creating real-world data collection scenarios for each

new environment.

4. In this study, RSSI measurements and Image data were first processed by two

independent positioning systems whose outputs were then processed by a third

heuristic model to localize and track users anonymously. While not part of this

research scope, it is possible to fuse RSSI measurements from wireless nodes directly

with image data by fusing features common features from the two heterogeneous

data streams as demonstrated in [84]. This may be advantageous since a fused data

could then be processed by one Machine Learning or Deep Learning model thereby

reducing system complexity. Furthermore, the fused data may be able to reduce

the spatio-temporal variance of RSSI data which may improve performance of the

BLE-IPS significantly.

5. In this study we showcased the independence of the proposed MIPS from nature

of the multimodal data itself. A followup study is needed to further verify this
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observation using different data modalities such as RFID, UWB, Stereo Image,

Thermal Images and so on.

6. It is essential to test the Scalability of the proposed architecture in a follow-up study

for gauging its real-world applicability. In context of this MIPS system, Scalability

may refer to concepts such as the number of overhead camera units needed to

identify and localize users in a large workspace, number of smartphones that can

simultaneously communicate with one Edge device, transferring unique associations

between overlapping camera regions, scaling to multi room, multi building testbeds

and so on.

7. Finding the cells in the grid that have good RSSI feature based discrimination

was done manually, which is a time consuming and laborious process. This can

be potentially automated with unsupervised machine learning methods such as

clustering to potentially improve the performance of BLE-IPS.

8. In this study, we did not consider threat models for compromising anonymization.

A future study can utilize Cybersecurity concepts based on multi-agent systems,

blockchain and deep learning ?? to investigate how data security of users may be

breached and what preventive measures can be taken to prevent loss of anonymiza-

tion in the proposed MIPS.
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Abstract

Various Indoor Positioning System (IPS) has been recently developed with the goal

of accurately tracking people with user-level identification for improving safety, security

and, optimizing indoor spaces and services (navigation, energy management, contact-

tracing, etc.). Designing IPS requires finding an optimum balance between users’ privacy,

tracking accuracy, system latency, cost, and ease-of-use, etc. Vision-based positioning can

localize users with ≤ 100cm resolution but cannot distinguish them uniquely without

person-specific features such as facial image, biomarkers. On the other hand, IPS using

radio frequency technologies can distinguish users using smartphone’s MAC address or

an anonymized identifier but have cost and performance trade-offs.

The primary goal of this thesis is to design a Multimodal Indoor Positioning Sys-

tem (MIPS) that can anonymously distinguish users and track them in indoor spaces.

The proposed system takes advantage of the best of both sensing technologies i.e. a

BLE 4.2 IPS generates an anonymous user identifier which is then paired with the object

tracking capability of Overhead Vision IPS for privacy-preserving multi-user tracking.

The system architecture uses inexpensive hardware, open-source software, and machine

learning techniques to reach an optimum compromise between anonymity and tracking

accuracy. We evaluate the performance of the MIPS system with three major metrics viz.

Object Localization Error (OLE), Object Tracking Error (OTA), and System Latency.

We found the overall MIPS performance for OTA ≥ 90% and OLE ≤ 50cm for 3 out 5
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scenarios. In these 3 scenarios, MIPS demonstrated near-perfect anonymous identifica-

tion for as many as 6 users walking concurrently on the testbed. The average association

latency was ≤ 0.06ms and the average system latency was 70ms. These findings show the

strong potential of MIPS for real-world multi-user anonymous tracking using Bluetooth

and vision multimodal data provided certain conditions are met.
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